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Abstract

Products are increasingly made by assembling separately produced modules. Motivated by
the notion that a �rm�s production function drives its organization, we explore how modular
production shapes a �rm�s communication structure. Decisions are partitioned into modules
and require closer coordination within modules than across. Each agent knows the state his
decision must be adapted to. The principal decides whom each agent tells about his state, given
that each communication link comes at a cost. We show that optimal communication networks
follow a simple threshold rule and exhibit the threshold property. We discuss comparative statics,
applications, and empirical implications.
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1 Introduction

Modular production used to be the exception, now it is the norm. Ever since IBM introduced the

�rst modular computer in 1964, �rms in a wide range of industries have designed modular versions

of their products (Baldwin and Clark 2000). Boeing�s Dreamliner is one prominent example.1 Other

examples range from smartphones to residential homes to software programs.2 Nowadays so many

products are made by assembling separately produced modules that our times have been called the

Modular Age (Garud et al. 2009).3

This paper is rooted in the notion that a �rm�s production function drives its organization� that

the technological interdependencies among a �rm�s decisions shape the organization of those who

make them. As such, we expect a �rm with a modular product to have a distinct organization and

a �rm�s organization to change as its product becomes more modular. Our goal is to understand

the impact of modular production on the organization of �rms.

To this end, we develop a model of a single �rm with two key ingredients. The �rst is a

modular production function, which we model as a network of decisions that is partitioned into

modules, sets of decisions that require more coordination with each other than with decisions in

the other modules. The second ingredient is a communication network. Each decision is made by

a di¤erent agent who observes the relevant local conditions. The communication network speci�es

whom each agent tells about his local conditions, after which they all make their decisions. As in

Arrow (1974), each communication link comes at a cost, capturing the time and energy it takes to

communicate. The organizational problem is to design an optimal communication network, trading

o¤ the e¢ ciency of decision making with the cost of communication.4

The challenge in designing an optimal network is the abundance of possibilities and absence of

any apparent way to order them. Our main result shows that, despite the rich set of possibilities,

optimal communication networks are characterized by a simple threshold rule. The key object is

module cohesion, which captures how distinct a module is from the rest of the production network.

1See Section 7 and the references therein.
2See Baldwin and Clark (1997, 2000). See also the Wikipedia entries for Modular Design, Modular Programming,

and Modular Building and the references therein.
3Herbert Simon anticipated the rise of modular product designs in an article in 1962, in which he observed that

complex systems� large �rms, mechanical watches, the human body� tend to be made up of modules, groups of
elements with stronger within than across group interactions (Simon 1962). The prevalence of modular structures
has since been corroborated by the literature on community detection, which has documented them in a wide variety
of complex systems (Guimera et al. 2005, Meunier et al. 2009, and Fortunato 2010).

4As Kenneth Arrow put it: �Since information is costly, it is clearly optimal, in general, to reduce the internal
transmission...That is, it pays to have some loss in value for the choice of terminal act in order to economize on inter-
nal communication channels. The optimal choice of internal communication structures is a vastly di¢ cult question�
Arrow (1974, p. 54).
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In an optimal communication network, each agent tells his state to the other agents in his module,

provided the need to coordinate with them is not too low, and he tells his state to all the agents

in modules whose cohesion is above a threshold. The threshold di¤ers across agents depending on

the characteristics of their decisions and modules and the degree of uncertainty about their states.

This characterization has implications for what optimal communication networks look like,

what structures they exhibit. Speci�cally, it implies that optimal communication networks have

the threshold property. Loosely speaking, they exhibit a common receiver ranking that orders agents

by how many others tell them about their local conditions. The threshold property implies that

optimal communication networks cannot take the form of a tree or a matrix, which are structures

that are commonly used to describe the allocation of authority in �rms. Instead, we show that

under a natural condition, optimal communication networks have a core-periphery structure, in

which modules are partitioned into an intensely communicative core and a sparsely communicative

periphery. Such structures are prevalent among social networks.5 Even if the condition is not sat-

is�ed, optimal communication networks still resemble core-periphery structures. This is so because

exhibiting the threshold property implies a generalized core-periphery structure that di¤ers from

the standard one because of the presence of a third group of modules whose members communicate

too much to be in the periphery and too little to be in the core.

The characterization of optimal communication allows us to explore what happens when prod-

ucts become more modular� when the within-module needs for coordination become stronger rel-

ative to the across-module ones. If the production function is only somewhat modular, module

cohesions are small, and, thus, similar to each other. This similarity favors all-or-nothing commu-

nication in which each agent either tells his state to all the other agents, or to none of them. If

the production function is su¢ ciently modular, in contrast, module cohesions are not only large

but also very di¤erent from each other. These large di¤erences can make it optimal for agents to

tell their states to some of the agents� those in the most cohesive modules� but not to others.

Modularity, therefore, causes the fragmentation of communication networks and favors targeted

communication to subsets of agents.

Having characterized optimal communication and explored comparative statics, we turn to

applications. Even though modular production has so far received little attention in economics,

it has long been the focus of a literature in management and software engineering. We revisit

two tenets of this literature, the Mirroring Hypothesis, which conjectures that the optimal way

to organize modular production is to mirror the production function, and information hiding, the

5See, for instance, Borgatti and Everett (2000) and Rombach et al. (2017) and the references therein.
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Figure 1: The Design Structure Matrix of a laptop in which each row and column corresponds to
a task involved in designing the laptop and an �x�entry indicates a strong need for coordination
between the corresponding tasks (replication of Figure 2.3 in McCord and Eppinger (1993)).

notion that modular production functions allow organizations to economize on communication

costs by hiding information.6 We conclude by discussing testable implications, where we focus, in

particular, on the threshold nature of optimal communication.

The story of the �rst modular computer� IBM�s System/360� illustrates the notion that mod-

ular production impacts organization.7 Before the System/360, computers had been tightly in-

tegrated systems of their constituent parts. As a result, a change in a single critical component

required the design of an entirely new computer. This feature made it di¢ cult to adapt comput-

ers to changes in customer preferences and led IBM to seek a computer that could be made by

assembling exchangeable modules. To design the new computer, IBM changed its organization.

Engineers were divided into teams, each of which was put in charge of designing a di¤erent module.

Across-team communication was limited, both because the teams were scattered across the globe

and because the modular structure often made it unnecessary. This fragmented organization ap-

pears to have served IBM well. The System/360 became an enormous �nancial success and changed

how computers have been designed ever since.8

Our approach to modeling modular production follows a path taken in systems engineering,

6See Thompson (1967), Conway (1968), Parnas (1972), Henderson and Clark (1990), Sanchez and Mahoney (1996),
and, for a discussion of the literature, Colfer and Baldwin (2016).

7This account is based on Baldwin and Clark (1997, 2000).
8Baldwin and Clark (1997) argue that the organizational changes still reverberate today: �But modularity also un-

dermined IBM�s dominance in the long run, as new companies produced their own so-called plug-compatible modules�
printers, terminals, memory, software, and eventually even the central processing units themselves� that were com-
patible with, and could plug right into, the IBM machines. By following IBM�s design rules but specializing in a
particular area, an upstart company could often produce a module that was better than the ones IBM was making
internally. Ultimately, the dynamic, innovative industry that has grown up around these modules developed entirely
new kinds of computer systems that have taken away most of the mainframe�s market share.�
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Figure 2: Left panel� The production function takes the form of a network with a non-overlapping
community structure, where darker shading indicates more cohesive modules. Right panel� Given
the production network, the principal designs optimal communication networks.

which characterizes products with Design Structure Matrices (Eppinger and Browning 2012). Fig-

ure 1 provides an example of such a matrix for a laptop. Each row and column refers to a task

involved in designing the product, and the matrix entry indicates the need for coordination between

the tasks. A product is modular if the Design Structure Matrix is a block matrix, as it is, at least

approximately, in the case of the laptop. The blocks of the matrix form the modules, such as the

LCD screen. The block structure implies a greater need for coordination between tasks involved in

the LCD screen than between tasks in the LCD screen and, say, those in the Main Board.

Following this approach, we model the production function as a network of decisions with a

non-overlapping community structure (Girvan and Newman 2002), as illustrated in the left panel

in Figure 2. Every node represents a decision, an agent who makes the decision, and a state that

captures the local conditions. The size of a node represents the importance of adapting the decision

to its state, and the width of a link represents the importance of coordinating the two decisions

it connects. Decisions are partitioned into groups whose members require more coordination with

each other than with decisions in other groups. These modules are indicated by the shaded areas

in the �gure. This speci�cation of the production network gives rise to an adjacency matrix with

a block structure, similar to the Design Structure Matrix in Figure 1.

As we noted above, a key characteristic of the production network is the cohesions of its modules,

which captures how distinct each is from the rest of the network. A module�s cohesion is increasing

in the number of decisions it contains and the need for coordination among them and is decreasing

in the degree of coupling, the need for coordination between two decisions that belong to di¤erent

modules. In Figure 2 a more cohesive module is indicated by darker shading.

This speci�cation of the production network allows for a wide variety of di¤erences in the

technological structures of modular products. It allows for decisions to di¤er in their needs for
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adaptation and the degree of uncertainty about their states, for modules to di¤er in the number

of decisions and the need for coordination between them, and for an arbitrary number of decisions

and modules. The only substantive restriction is that coupling is homogeneous, that the need

for coordination is the same across any two modules. We show in an extension that our results

generalize naturally if we allow for heterogeneous coupling.

We embed this production network in a model of a �rm�s internal organization. To focus on

communication costs, we follow the literature on team theory and abstract from incentive con�icts.

We revisit this assumption in an extension where we show that our results continue to hold when

we allow agents to have constant biases. Even though there are no incentive con�icts, agents may

make poor decisions because they only observe their own states. What they learn about the other

states is determined by a communication network, such as the one illustrated in the right panel in

Figure 2. Each node is the same as in the production network, but the links are now directed and

unweighted and indicate who tells whom his state. As we noted above, we follow Arrow (1974)

in assuming that each directed link comes at a cost, which represents the time and e¤ort it takes

agents to understand each other, to learn the other�s language or code.9

The principal�s problem is to design the communication network. She takes the production

network as given and builds the communication network, taking into account that each link comes

at a cost. The contribution of this paper is to provide an analytical solution to this problem.

To get to the solution, suppose the principal adds a directed link to an arbitrary communication

network. The marginal bene�t of adding such a link is the additional expected revenue generated

by the agents making better decisions. Learning the sender�s state allows the receiver to coordinate

his decision more closely with the sender�s, which, in turn, allows the sender to adapt his decision

more closely to his state. Communication facilitates coordination, which fosters adaptation.

The �rst key step to solving the principal�s problem is �nding that this marginal bene�t is inde-

pendent of what the receiver, or any other agent, knows about any other state. This feature implies

that the principal�s problem can be decomposed into independent subproblems. The principal can

consider each agent separately and ask whom this agent should tell about his state.

The solution to each subproblem is driven by another property of the marginal bene�t of adding

a link to a communication network: the marginal bene�t is larger, the more agents know the sender�s

9As Kenneth Arrow put it: �... I am thinking of the need for having made an adequate investment of time and
e¤ort to be able to distinguish one signal from another. Learning a foreign language is an obvious example of what
I have in mind. The subsequent ability to receive signals in French requires this initial investment. There are in
practice many other examples of codes that have to be learned in order to receive messages; the technical vocabulary
of any science is a case in point. The issue here is that others have found it economical to use one of a large number
of possible coding methods, and for any individual it is necessary to make an initial investment to acquire it�Arrow
(1974, pp. 39-42). See Cremer et al. (2007) for a formal investigation of this notion.
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state. More generally, in equilibrium, expected revenue is supermodular in the set of agents who

know any given state. This property implies that if the principal bene�ts from adding a link to a

communication network she must also bene�t from adding links from the sender to all the other

agents in the receiver�s module.

The second key step to solving the principal�s problem is �nding that the same logic applies

across modules: if the principal bene�ts from adding a link across modules, she must also bene�t

from adding links from the sender to any agent in a module that is more cohesive than the receiver�s.

Our main result then follows readily: in an optimal communication network, each agent tells

his state to the other agents in his own module, provided the need to coordinate with them is not

too low, and to any agent in another module whose cohesion is above a threshold. The threshold

is lower, the more cohesive the sender�s module is, the more important it is to adapt his decision

to his state, and the more uncertainty there is about his state.

As we observed above, this result has implications for the structure of communication networks.

We defer further discussion of these implications, as well as of comparative statics and applications,

until after we have presented the model and formally derived the main result.

2 Related Literature

The existing literature on modular production is largely informal and lies mostly outside of eco-

nomics. It goes back to Simon (1962), who observed that complex systems are often made up of

modules and argued that this modular design facilitates adaptation. A similar point was made by

Alexander (1964), who argued that a modular system design accelerates adaptation by allowing

the system to adapt module by module.

We are not aware of papers that formalize these observations and do not attempt to do so in

this paper. Instead, we follow the approach of a related literature in management that takes the

modular design of products as given and explores its implications for the organization of �rms. As

we noted earlier, central arguments in this literature are the Mirroring Hypothesis, which posits that

the internal organization of �rms mirrors the modular design of the products they make, and the

notion that information hiding can reduce communication costs in �rms with modular products (see

the references in Footnote 6).10 Langlois and Robertson (1992) observed that modular production

10A related literature reverses the causality of the Mirroring Hypothesis and argues that the design of products
mirrors the organization of the �rms that designed them. In this view, a modular organization tends to design modular
products. In software engineering, this view is known as Conway�s Law, named after Melvin Conway, who observed
that �To the extent that an organization is not completely �exible in its communication structure, that organization
will stamp out an image of itself in every design it produces�Conway (1968, p. 30).
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might not only a¤ect the internal organization of �rms but also their boundaries and, through

this channel, the structure of industries. Baldwin and Clark (2000) document these dynamics in

the context of IBM and the computer industry and provide an exhaustive discussion of modular

production and its organization. We take a �rst step towards examining these issues through the

lens of an economic model. In doing so, we take the boundaries of �rms and the structure of their

industries as given and examine the impact of modular production on their internal organization.

We focus, in particular, on the impact of modular production on communication structures.

Such structures have long been recognized as an elemental feature of organizations (Arrow 1974).

Moreover, recent empirical papers demonstrate that records of electronic communication make the

patterns of such communication observable to outsiders (see, for instance, Yang et al. (2021) and

Impink et al. (forthcoming)). This trend suggests that it may become possible to test predictions

about communication structures and the information �ows they generate, and to do so more readily

than predictions about other aspects of internal organization (such as the allocation of decision

rights, which have received much attention in the theoretical literature but have proven di¢ cult to

study empirically).

Communication structures, as well as information processing, are the focus of the large and

long-running literature on team theory (for an early treatment see Marschak and Radner (1972)

and for more recent surveys see Garicano and Prat (2013) and Garicano and Van Zandt (2013)).

A central assumption in this literature is that agents share the same goal, but cognitive constraints

make it di¢ cult for them to communicate and process information. Our focus on communication

structures and cognitive constraints places us �rmly in this literature.

Communication structures depend on the technological interdependencies among the decisions

agents make. In many settings, this interdependency arises because decisions must be both adapted

to local conditions and coordinated with each other. March and Simon (1958) observed that this

interdependency gives rise to a trade-o¤ between adaptation and coordination that shapes the

organization of �rms. The contemporary organizational economics literature that studies how this

trade-o¤ a¤ects organizations started with Dessein and Santos (2006), who explored implications

for job design, and Alonso et al. (2008) and Rantakari (2008), who examined implications for the

allocation of decision rights.

We relate to a set of papers that explore how the trade-o¤ between adaptation and coordination

shapes communication structures (Calvó-Armengol and de Martí Beltran 2009, Calvó-Armengol et

al. 2015, Dessein et al. 2016, and Herskovic and Ramos 2020). These papers di¤er on various

dimensions. Some focus on cognitive constraints while others allow for incentive con�icts. Some
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examine the centralized design of communication structures while others study their decentralized

formation. And some assume that decisions need to be adapted to di¤erent states while others

require them to be adapted to di¤erent signals about the same state. An assumption that is shared

by all but one of these papers, though, is that the production network is complete, that the need for

coordination between any two decisions is the same. This assumption rules out richer technologies,

such as modular production.

The paper that allows for richer production networks, and is closest to ours, is Calvó-Armengol

et al. (2015). They explore an organization in which each agent adapts his decision to the local

conditions about which he is privately informed. In contrast to the above papers, but like us, they

allow the needs for coordination to di¤er across decision pairs. They do not, however, assume

that production has a non-overlapping community structure, and thus do not explore modular

production. Their main result characterizes how much e¤ort each agent puts into both explaining

his state to others and understanding theirs.

To explore the impact of modular production on communication structures, we make use of the

large toolbox of network economics. The payo¤ functions of our agents are quadratic, and their

actions are continuous and exhibit strategic complementarities. This allows us to build on the

literature on quadratic games on networks that started with Ballester et al. (2006). In recent con-

tributions to this literature, Bergemann et al. (2017), Golub and Morris (2017), and Lambert et al.

(2018) characterized optimal decision-making for general information and network structures. We

draw on their results to determine the agents�decision-making for given communication networks.

Our focus, though, is not on decision-making but on the prior stage in which the principal designs

the communication network.

Finally, our paper contributes to a small but growing literature that studies centralized network

design.11 In an early paper in this literature, Baccara and Bar-Isaac (2008) explored the optimal

design of a network among members of a criminal organization in which more links facilitate

cooperation but also leave the organization more vulnerable to attack by law enforcement. The

trade-o¤ between the e¢ ciency of interactions among members of a network and its increased

vulnerability to attacks by outsiders is also at the center of Goyal and Vigier (2014), who were

motivated by the optimal design and defense of computer networks. Even though we also explore

centralized network design, we di¤er from these papers in both motivation and model.

11This literature is distinct from the large literature on endogenous network formation that started with Jackson
and Wolinsky (1996) and Bala and Goyal (2000) and studies the emergence of networks from the decentralized
decisions of agents. Some of the papers on communication structures we mentioned above, such as Herskovic and
Ramos (2020), belong to this literature. In our model, instead, the network does not emerge endogenously from
agents�communication decisions but is designed centrally by the principal.
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3 Model

A �rm consists of one principal and N agents. All parties are risk neutral and care only about the

�rm�s pro�ts. There are no incentive con�icts.

Production. Each agent i 2 N makes a decision di 2
�
�D;D

�
that is associated with a state

�i 2
�
��; �

�
, where N = f1; : : : ; Ng is the set of agents, and D and � are large but �nite scalars.

Revenue depends on how well each decision is adapted to its associated state and coordinated with

the other decisions. Speci�cally, we follow Ballester et al. (2006) and assume that revenue is

r (d1; : : : ; dn) =
NX
i=1

24�d2i + 2aidi�i + NX
j=1

pijdidj

35 ; (1)

where ai > 0 captures the importance of adapting decision di to its state �i, and the degree of

strategic complementarity pij � 0 captures the need for coordination between decisions di and

dj .12 The need for coordination is symmetric, that is, pij = pji, and pii is equal to zero. The

interactions between decisions can, therefore, be represented by an undirected network, which we

summarize in an N � N matrix P with entries pij . We assume that
PN
j=1 pij < 1 for all i 2 N ,

which ensures that equilibrium decisions exist.

Modules. The decisions, and their associated states and agents, are partitioned into modules.

There areM modules, and modulem 2M = f1; : : : ;Mg contains nm � 1 decisions. Functionm (i)
denotes the module decision di belongs to. For expositional convenience we adopt the convention

that the �rst decision d1, and its associated state and agent, belong to module 1, and assume that

there are at least three modules, that is, M � 3.
The need for coordination between two decisions is stronger if they belong to the same module

than if they belong to di¤erent ones. Speci�cally, the need for coordination between any two

decisions di and dj is given by pij = p � 0 if they belong to di¤erent modules and, abusing notation
slightly, it is given by pij = pm � p if they belong to the same module m. The parameter p,

therefore, captures the degree of coupling� the need for coordination across modules� while the

parameter pm captures the need for coordination within module m.

12A special case of this formulation is the widely-used payo¤ function in which payo¤s are the weighted average
of the quadratic di¤erence between each decision and its state and between each pair of decisions (see, for instance,
Alonso et al. (2008) and Calvó-Armengol and de Martí Beltran (2009)). Speci�cally, if ai = 1 �

PN
j=1 pij for all

i 2 N , we can re-write revenue as

r (d1; : : : ; dn) =

NX
i=1

"
�
 
1�

NX
j=1

pij

!
(di � �i)2 �

1

2

NX
j=1

pij (di � dj)2
#
+

NX
i=1

 
1�

NX
j=1

pij

!
�2i ,

where the last term is a constant.

9



Information. Each agent i 2 N privately observes the realization of his state �i, which is inde-

pendently drawn from a distribution with zero mean and variance �2i .

Before the states are drawn, the principal can place communication links from any agent to any

others. Each one of these links costs  > 0, which captures the resources it takes for one agent

to tell his state to another. If the principal places a communication link from agent i to agent j,

agent i tells j the realization of his state �i. Communication, therefore, takes the form of a directed

network, which we summarize in an N �N matrix C. Entry cij is one if agent i tells agent j his

state and it is zero if he does not. Moreover, since each agent i observes his own state, cii is always

equal to one. Row Ci then summarizes the agents who learn �i and column C(j) summarizes the

states agent j learns about. The communication network, and all other information except for the

agents�states, are common knowledge.

Organization. The principal�s problem is to design an optimal communication network that

maximizes expected revenue net of communication costs, that is, to solve

max
C
E[r (d1; : : : ; dN ) jC ]� 

NX
i=1

X
j 6=i

cij : (2)

Timing. After the principal designs the communication network, agents learn their states and

tell them to the other agents as speci�ed by the network. Next, agents simultaneously make their

decisions, after which the game ends.

We discuss key assumptions, such as homogeneous coupling and the absence of incentive con�icts

in Section 8, after we solve the model in the next section, derive implications in Section 5, perform

comparative statics in Section 6, and explore applications in Section 7.

4 Solving the Model

We start by determining Bayes-Nash equilibrium decisions for any given communication network.

We then show that, given these equilibrium decision rules, we can simplify the principal�s problem

of designing an optimal communication network by decomposing it into independent subproblems.

Finally, we characterize the solution to the principal�s problem by solving these subproblems.

4.1 Decision-Making

After the agents have observed and communicated their states, they make the decisions that solve

max
di
E
�
r (d1; : : : ; dN )

��C(i)

�
for all i 2 N , (3)
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where r (d1; : : : ; dN ) is revenue (1) and where C(i) is the ith column of the communication matrix

C that summarizes the states agent i knows. The best-response functions that follow from these

optimization problems are given by

di = ai�i +
NX
j=1

pijE
�
dj
��C(i)

�
. (4)

Each agent�s best response is the weighted sum of his state and the decisions he expects the other

agents to make, where the weight on his state is ai, and the weight on the decision he expects

agent j to make is pij . To solve the system of best responses, note that (diagCj)P (diagCj) is the

subgraph of the production network that consists of the nodes whose agents know state �j , and all

the links between them. We can then state the following lemma.

LEMMA 1. Equilibrium decisions are unique and given by

d�i =
NX
j=1

aj!ij (Cj) �j for all i 2 N , (5)

where !ij (Cj) denotes the ijth entry of (I � (diagCj)P (diagCj))
�1.

The lemma shows that agent i�s equilibrium decision d�i is the weighted sum of all states, where

the weight on state �j is given by aj , the importance of adapting decision dj to �j , times !ij (Cj),

the ijth entry of (I � (diagCj)P (diagCj))
�1. This latter object has a natural interpretation in

terms of walks on the production network: it is the value of all walks from di to dj on the subgraph

of the production network that consists only of decisions made by agents who know state �j .13 If

agent i does not know �s, for instance, di is not part of this subgraph, and so !is (Cs) = 0. Agent i

puts no weight on �s, as one would expect. If, instead, �s is public, the subgraph encompasses the

entire production network, and the weight agent i puts on �s is the value of all walks from di to ds

on the production network P . Note that this is the case no matter what the agents know about

the other states. This result re�ects a general implication of the lemma that will be important for

what follows: the weight agent i puts on state �s depends only on who knows �s and not on what

agent i, or any other agent, knows about any other state.

The part of the equilibrium decision rules that will turn out to be important for the design

of communication networks is the weight each agent�s decision puts on his own state. To get an

intuition for this weight, consider the simple example of a production network with just three

modules, each of which consists of a single decision and associated state and agent. Suppose �rst
13A walk between di and dj on the production network is a sequence of links that lead from di to dj . Each link

between two decisions in this sequence is associated with a discount factor, which is given by the need for coordination
between them. The value of a walk is the product of these discount factors.
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agent 1 does not tell his state to the other two agents. Agent 1 is then forced to adapt to his state

autonomously, without the bene�t of having the others coordinate their decisions with his. This

limits the weight he puts on his own state to a1!11 ((1; 0; 0)) = a1.

Suppose instead that agent 1 tells his state to agent 2 but not to agent 3. Since agent 2 cares

about coordinating his decision with agent 1�s, he puts some weight on �1. And since agent 1 also

cares about coordinating his decision with agent 2�s, this induces him to put more weight on his

own state. Speci�cally, if agent 1 tells his state to agent 2, the weight he puts on �1 increases to

a1!11 ((1; 1; 0)) = a1

�
1 +

p2

1� p2

�
> a1.

Communication enables coordination, which, in turn, facilitates adaptation. The extent to which

it does so is captured by the coordination multiplier !11 (C1).14

A key property of the coordination multiplier is that it is supermodular. Suppose agent 1 tells

his state to both agents 2 and 3. Since agents 2 and 3 care about coordinating with each other,

and not just with agent 1, they put more weight on �1 than they would if agent 1 told his state to

only one of them. This increase in the weights agents 2 and 3 put on �1, in turn, induces agent 1

to increase the weight he puts on his own state to

a1!11 ((1; 1; 1)) = a1

�
1 +

p2

1� p2 +
p2

1� p2 +
2p3

(1� p2) (1� 2p)

�
;

where the last term in brackets captures the supermodularity.

These properties of the equilibrium decision rules hold in general, and we summarize them in

the following corollary.

COROLLARY 1. The weight ai!ii (Ci) that decision d�i puts on its state �i satis�es !ii (Ii) ai = ai,

where Ii is the ith row of an N �N identity matrix, and it is increasing and supermodular in Ci.

Having characterized the agents�decision-making, we next turn to the principal�s problem.

4.2 Simplifying the Principal�s Problem

The principal�s problem is to design a communication network that maximizes expected pro�ts. It

is useful to start by rewriting revenue (1) as

r (d1; : : : ; dN ) =

NX
i=1

aidi�i �
NX
i=1

di

0@di � ai�i � NX
j=1

pijdj

1A .
14The coordination multiplier is related to the notion of cycle centrality in Talamàs and Tamuz (2017).
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Substituting in the best-response functions (4), this expression simpli�es to

r (d�1; : : : ; d
�
N ) =

NX
i=1

aid
�
i �i +

NX
i=1

NX
j=1

pijd
�
i

�
d�j � E

�
d�j
��C(i)

��
. (6)

Notice that by the law of iterated expectations the second term on the right-hand side is zero in

expectation, which delivers the following result.

LEMMA 2. Under equilibrium decision-making, expected revenue is given by

R (C) � E [r (d�1; : : : ; d�N )] =
NX
i=1

aiCov (d
�
i ; �i) ; (7)

where Cov (d�i ; �i) = ai�
2
i!ii (Ci).

The lemma shows that expected revenue boils down to how well each decision is adapted to its

associated state. For expositional convenience, we interpret aiCov (d�i ; �i) as the expected revenue

generated by agent i 2 N and denote it by

Ri (Ci) � aiCov (d
�
i ; �i) = a2i�

2
i!ii (Ci) :

The term a2i�
2
i is the revenue agent i is expected to generate if he does not tell his state to any

other agent and, thus, adapts his decision to his state autonomously. We refer to this term as the

value of autonomous adaptation of decision di. The coordination multiplier captures how much

more revenue agent i is expected to generate when he adapts his decision more closely to his state

because other agents know his state.

The key property of agent i�s expected revenue is that it depends on Ci but not on the rest

of communication network C. An additional agent learning �i increases agent i�s coordination

multiplier !ii (Ci) and thus the weight ai!ii (Ci) he puts on his state. As a result, it also increases

the expected revenue a2i�
2
i!ii (Ci) he generates. In contrast, agent i, or any other agent, learning

any other state does not a¤ect !ii (Ci) and thus leaves the weight agent i puts on his own state,

and the revenue he is expected to generate, unchanged.

This property of expected revenue is key because it implies that the principal�s problem is

separable. Instead of solving the overall problem (2) head on, the principal can consider each agent

separately and ask whom this agent should tell about his state. The answer to whom agent i 2 N
should tell about �i is independent of whom any other agent should tell about his own state. We,

therefore, have the following.
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PROPOSITION 1. An optimal communication network solves the principal�s problem (2) if and

only if it solves the N independent subproblems

max
Ci

Ri (Ci)� 
X
j 6=i

cij . (8)

This separability result greatly facilitates the principal�s quest for an optimal communication

network. We can further simplify the problem by recalling that the coordination multiplier is su-

permodular. Together with the linearity of communication costs, this implies that the subproblems

in the proposition are also supermodular. For any given parameter values, the principal�s problem

can, therefore, be solved using standard algorithms that maximize supermodular functions in poly-

nomial time (see, for instance, chapter 10.2 in Murota (2003)). Our goal, though, is to solve the

problem analytically, and we do so in the next section.

4.3 Optimal Communication Networks

The separability result in Proposition 1 allows us to solve the principal�s problem by considering

each agent separately and asking whom he should tell about his state. The answer depends critically

on the module cohesion of each module, which we de�ne as

xm =
1

1 + p� (nm � 1) (pm � p)
for m 2M.

As we noted earlier, a module�s cohesion captures how distinct it is from the rest of the production

network. To see this interpretation, note that the last term in the denominator is the excess need for

coordination of any decision di in the module, the di¤erence between its total need for coordinationPN
j=1 pij = (nm � 1) pm + (N � nm) p and (N � 1) p, the value

PN
j=1 pij would take if the need for

coordination within module m were the same as that across the modules. A module is, therefore,

more cohesive than another module if its decisions have a higher excess need for coordination.15

The �rst step in answering whom an agent should tell about his state is to express his expected

revenue in terms of the model�s primitives, which we do in the next lemma. To economize on

notation, and without loss, the lemma and subsequent discussion focus on agent 1 who, recall,

belongs to module 1.

LEMMA 3. Agent 1�s expected revenue is given by

R1 (C1) = a21�
2
1

 
1 + (p1 � p)x1 (~n1)

1 + p1
+

px1 (~n1)
2

1� p
PM
m=1 ~nmxm (~nm)

!
, (9)

15Our de�nition of module cohesion is close to the de�nition of cohesion in Morris (2000). Applied to our setting
his, like ours, is increasing in nm and pm and decreasing in p.
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where

xm (~nm) =
1

1 + p� (~nm � 1) (pm � p)
for m 2M,

and ~nm is the number of agents in module m who know agent 1�s state.

We already know that agent 1�s expected revenue is the product of a21�
2
1� the value of au-

tonomous adaptation of his decision� and the coordination multiplier !11 (C1). The lemma shows

that the coordination multiplier takes a simple form from which we can glean properties of optimal

communication networks we show formally below.

Notice �rst that the coordination multiplier is convex in each ~nm, the number of agents in

modulem who know agent 1�s state. This convexity re�ects the supermodularity of the coordination

multiplier and implies that agent 1 either tells his state to all the agents in a module or to none of

them. The remaining question then is what modules agent 1 should tell about his state.

Next notice that the coordination multiplier depends on the characteristics of modules m > 1

only through the sum ~n2x2 (~n2) + � � �+ ~nMxM (~nM ). If agent 1 does not tell his state to agents in
module m, ~nm = 0 and the characteristics of module m do not enter agent 1�s expected revenue.

If, instead, agent 1 does tell his state to agents in module m, ~nm = nm and the characteristics of

module m enter agent 1�s expected revenue only through its scaled cohesion nmxm, where we are

using the fact that xm = xm (nm).

Finally, notice that the coordination multiplier is convex in the sum of the scaled cohesions

of the modules m > 1 that agent 1 tells about his state. This convexity once again re�ects the

supermodularity of the coordination multiplier. It is important here because it implies that if it

is pro�table to expand the set of informed modules by one additional module, it must also be

pro�table to expand it further by adding a second module, provided that the second is no less

cohesive than the �rst. The answer to whom agent 1, or any other agent, should tell about his

state follows directly from this claim.

PROPOSITION 2. There exist thresholds �i � 0 and �i � 0 such that it is optimal for agent i 2 N
to tell his state to a di¤erent agent j 2 N if and only if :

(i.) agent j belongs to the same module m (j) = m (i) with coordination need pm(i) � �i, or

(ii.) agent j belongs to a di¤erent module m (j) 6= m (i) with cohesion xm(j) � �i.

Threshold �i is increasing in , decreasing in a2i�
2
i , p, pm, and nm for any m 2M, and independent

of a2k�
2
k for any k 2 Nnfig. The comparative statics of threshold �i are the same, except that it is

independent of pm(i).

The key result in the proposition is that across-module communication is determined by a

threshold rule on module cohesion. An agent tells his state to agents in another module if that
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module is su¢ ciently cohesive. To see the intuition for why cohesion matters, suppose agent 1 tells

his state to the agents in one additional module, say module 2. Since the agents in module 2 care

about coordinating their decisions with agent 1�s, this induces them to put some weight on �1. And

since agent 1 also cares about coordinating his decision with theirs, this, in turn, allows him to

adapt his decision more aggressively to his state. Communication facilitates coordination, which

fosters adaptation, as we noted before.

The agents in module 2, though, do not only care about coordinating their decisions with agent

1�s, they also care about coordinating them with each other�s. This is where the cohesion of module

2 comes into play. The more cohesive the module is� the higher the excess need for coordination

of its decisions is� the more its agents care about coordinating their decisions with each other and,

thus, the more weight their decisions put on �1. Cohesion, therefore, matters because it strengthens

the link between communication and coordination which, ultimately, leads to more adaptation.

Cohesion also matters for within-module communication and does so for the same reason.

Suppose we decompose module 1 into agent 1 and a submodule that consists of all the other agents

and, thus, has cohesion x1 (n1 � 1). The bene�t of agent 1 telling the agents in the submodule
about his state is once again higher the more cohesive the submodule is. The di¤erence between

within and across-module communication is that agent 1�s decision is more tightly coupled to the

submodule than to any other module.16 This is why the rule that determines whether agent 1 should

tell his state to the other agents in his module is a threshold on p1 rather than on x1 (n1 � 1). And
it is why, other things equal, an agent is more likely to tell his state to the other agents in his own

module than to those in another module, as shown in the next corollary.

COROLLARY 2. Suppose agent i�s module m (i) is at least as cohesive as another module m, that

is, xm(i) � xm. It cannot be optimal for agent i to tell his state to the agents in module m but not

to the other agents in module m (i).

To get an intuition for the comparative statics in the proposition, consider Figure 3, where

we again focus on agent 1. There are four modules labeled in decreasing order of their cohesion:

x1 � x2 � x3 � x4. We denote the revenue agent 1 is expected to generate if he tells agents in

modules 1 to ` 2 f1; :::; 4g about his state by R1 (`). The blue curve in the �gure is the piecewise
linear extension of expected revenue, which we denote by R1 (`), and the blue line is a continuous

representation of communication costs 
�P`

m=1 nm � 1
�
. The changing curvature of expected

revenue R1 (`) re�ects the economic forces at work in our model. Supermodularity pushes towards

16More precisely, the need for coordination between agent 1�s decision and the submodule, given by p1, is higher
than that between agent 1�s decision and those in any other module, which is given by p � p1.
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Figure 3: Determining optimal communication networks for agent 1 (drawn for parameter values
n1 = n2 = n3 = 5; n4 = 2; p1 = p2 = p3 = 0:2; p4 =; p = 0:01; and a1�1 = 1).

convexity while the modular structure of the production function pushes towards concavity.

Now consider the e¤ect of changes in the parameters on the cost and bene�t curves. The slope

of each line segment in the bene�t curve is the marginal expected revenue generated by telling the

additional agents in the corresponding module about �1, divided by the number of additional agents.

This per node marginal bene�t is larger, the higher the value of autonomous adaptation for agent

1�s decision is. And it is larger, the more agents know �1 and the higher the need for coordination

among them is. An increase in a21�
2
1, nm, pm, or p, therefore, steepens the bene�t curve, which

favors telling agents in more modules about �1. In contrast, an increase in the communication costs

 steepens the cost curve, which favors telling agents in fewer modules about �1.

The characterization of the optimal communication networks in Proposition 2 is our main result.

To derive it, we �rst showed that the principal�s problem can be decomposed into independent

subproblems. While the subproblems are independent, though, their solutions are related in a way

that has implications for what types of structures optimal communication networks exhibit. We

explore these implications next.

5 Implications for Network Structures

We now turn to the implications of the characterization result in Proposition 2 for the structure of

optimal communication networks. Our starting point is that optimal communication networks have

the threshold property. Once we have established this result, we show that the class of networks

that have this property excludes a number of well-known structures and includes others.

Intuitively, a communication network has the threshold property if it exhibits a common receiver
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Figure 4: Communication networks exhibiting two-switches and directed three-cycles, where shaded
areas indicate modules and a dashed arrow indicates the absence of a communication link.

ranking� if agents can be ranked by whether they are told about a state in a di¤erent module, and

the same ranking determines the order in which they are told about any state that belongs to a

di¤erent module. Formally, we have the following.

DEFINITION. A communication network has the �threshold property� if there exist sender thresh-

olds fs1; : : : ; sNg and receiver scores fr1; : : : ; rNg such that for any two agents i; j 2 N who belong

to di¤erent modules, agent i tells agent j his state if and only if rj � si.

In line with the above intuition, the de�nition requires a common receiver ranking. Suppose

agents i and j belong to di¤erent modules, and agent i�s receiver score is larger than agent j�s,

ri > rj . Agent i then has a higher receiver rank than agent j does, he is told about any state in

any module m 2Mnfm (i) ;m (j)g that agent j is told about, and possibly others.
Optimal communication networks exhibit a common receiver ranking. Suppose agent i�s module

is more cohesive than agent j�s, xm(i) > xm(j). The characterization result in Proposition 2 then

implies that, in an optimal communication network, agent i is told about any state in any module

m 2 Mnfm (i) ;m (j)g that agent j is told about, and possibly others. We can, therefore, obtain
the receiver scores the de�nition calls for by setting ri = xm(i), and the sender thresholds by setting

si = �i, for all i 2 N . Doing so delivers the result.

COROLLARY 3. Optimal communication networks have the threshold property.

The class of networks that exhibit the threshold property excludes a number of well-known

structures and includes others. To describe what it excludes, we adapt Cloteaux et al. (2014) and

show that the threshold property rules out certain forbidden subgraphs. This then allows us to

rule out any structure that contains one or more of these subgraphs. The relevant subgraphs are

two-switches and directed three-cycles, which we illustrate in Figure 4 and de�ne as follows.
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Figure 5: Illustration of trees and matrices, where shaded areas indicate modules and an arrow
indicates communication links from all agents in one module to all the agents in the other.

DEFINITION. A communication network contains a �two-switch� if there are four agents i; j; k,

` 2 N who belong to di¤erent modules such that agent i tells his state to k but not to ` and agent

j tells his state to ` but not to k.

A communication network contains a �directed three-cycle� if there are three agents i; j; k 2 N
who belong to di¤erent modules such that agent i tells his state to j, but not the reverse, agent j

tells his state to k, but not the reverse, and agent k tells his state to i, but not the reverse.

The next lemma shows that the threshold property rules out these subgraphs.

LEMMA 4. A communication network with the threshold property contains no two-switches or

directed three-cycles.

To see why two-switches cannot be part of an optimal communication network, consider agents

i, j, k, and ` from the de�nition of two-switches and their illustration in Figure 4. If it is optimal

for agent i to tell his state to agent k but not to agent `, it must be that module m (k) is more

cohesive than module m (`). If module m (k) is more cohesive than module m (`), though, it cannot

be optimal for agent j to tell his state to agent ` but not to agent k. The intuition for why

three-cycles cannot be part of an optimal communication network is similar.

The lemma is useful because it rules out the many well-known network structures that do contain

two-switches or three-cycles (or both). Two structures are of particular relevance to us: trees and

matrices. These structures� which we illustrate in Figure 5 and de�ne below� are commonly used

to describe the allocation of decision rights in �rms. As the examples in the �gure suggest, though,

they all contain at least one two-switch. It then follows from the lemma, together with Corollary

3, that any optimal communication structure must be distinct from these well-known ones.

To state the result, we �rst de�ne the two structures as follows.
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DEFINITION. A communication network is a �tree� if there is a partition of the set of modules

into hierarchical levels 1; : : : ;H with H � 3 such that there is one module in level 1 and at least two
modules in level h 2 f2; : : : ;Hg. Each module in level h 2 f2; : : : ;Hg is associated with a unique
�predecessor module� in level h � 1. Any two agents i;j 2 N who belong to di¤erent modules tell

each other their states if and only if m (i) is a predecessor of m (j) or vice versa.

A communication network is a �matrix� if there are two partitions of the set of modules into

horizontal and vertical teams, with at least two horizontal teams containing at least two modules,

and such that any two modules in the same horizontal team are in di¤erent vertical teams. Any

two agents i,j 2 N who belong to di¤erent modules tell each other their states if and only if their

modules belong to the same horizontal or vertical team.

We then have the following.

COROLLARY 4. A communication network is not optimal if it is a tree or matrix.

The fact that the threshold property rules out well-known network structures raises the question

of what structures it is consistent with. We show next that under a natural condition, the threshold

property gives rise to a core-periphery structure with intense communication in the core, no across-

module communication within the periphery, and sparse communication between the core and the

periphery. As we noted in the introduction, such structures are prevalent among social networks.

DEFINITION. A communication network has a �core-periphery structure� if the set of agents can

be partitioned into a core and a periphery such that (i.) an agent in the core tells his state to all

the agents in other modules in the core, and (ii.) an agent in the periphery does not tell his state

to other agents in the periphery who do not belong to his module.

The next proposition shows that optimal communication networks have a core-periphery struc-

ture if the agents who have a low sender threshold also have a high receiver rank. Loosely speaking,

agents who talk a lot then also hear a lot, and thus form the core, while those who hear little also

talk little and �nd themselves in the periphery.

PROPOSITION 3. Suppose that for any agents i; j 2 N , �i � �j if and only if xm(i) � xm(j).

Any optimal communication network then has a core-periphery structure in which the agents who

belong to the most cohesive modules form the core.

The condition in the proposition is satis�ed if decisions that belong to more cohesive modules

have su¢ ciently higher values of autonomous adaptation a2i�
2
i than those that belong to less cohesive

ones. This follows from the results in Proposition 2 that an increase in a2i�
2
i reduces �i but leaves

�j , and cohesions xm(i) and xm(j), unchanged. The condition is satis�ed, for instance, if decisions

di¤er only in the size of the modules they belong to, as in the example illustrated in Figure 6.
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Figure 6: An optimal communication network with a core-periphery structure when decisions di¤er
only in the size of the modules they belong to ( = 0:00015, n1 = 5, n2 = 4, n3 = 2, n4 = 1,
p = 0:01, ai�i = 1, and pm(i) = 0:05 for all i 2 N ). An arrow from one module to another indicates
communication links from all agents in the former to all agents in the latter.

Even if the condition in the proposition does not hold, the structures of optimal communication

networks are akin to core-periphery structures. In particular, we show in Lemma 5 in the appendix

that exhibiting the threshold property implies a generalized core-periphery structure: modules can

be partitioned into a core, a periphery, and what we refer to as a suburban periphery. Subur-

ban periphery modules are involved in too much communication to the periphery and too little

communication from the core to belong to either.

6 The E¤ect of an Increase in Modularity

Having characterized optimal communication networks for modular production functions, we now

explore how these networks change as production becomes more modular� as the within-module

needs for coordination become stronger relative to the across-module ones. We show that such a

change leads to the fragmentation of communication and explain what form it takes.

Our starting point is a weakly modular production function in which the di¤erence in the within-

and across-module needs for coordination is small.

DEFINITION. Production network P is �weakly modular� if for all m 2M, nm � 2 and

pm � p <
p3 (1 + p)

(nm � 1) (1 + p (1 + nm))
.

In the previous sections we saw that optimal communication is shaped by two economic forces.

On the one hand, supermodularity of expected revenue pushes towards corner solutions in which

each agent either tells his state to all the other agents or to none of them. On the other hand, the

modular structure of the production network pushes towards interior solutions in which agents tell

their states to some of the other agents but not to all of them. Our �rst result here is that if a
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production network is only weakly modular, supermodularity dominates. Optimal communication

is then all or nothing, which we de�ne as follows.

DEFINITION. For a given production network P , optimal communication is �all or nothing� if

there exist thresholds i for all i 2 N such that it is optimal for agent i to tell his state to all

agents if  2 [0; i] and to no agents if  2 [i;1).

We then have the following.

PROPOSITION 4. If production network P is weakly modular, optimal communication is all or

nothing.

Intuitively, if the production network is only weakly modular, its modules cannot be very

pronounced. Their cohesions must be small and, thus, similar to each other. Supermodularity then

implies that it cannot be optimal for an agent to tell his state to agents in some modules but not

to those in others.

Next we turn to how the communication network changes if the production network becomes

more modular. Recall that the total need for coordination of decision di is given by

NX
j=1

pij =
�
nm(i) � 1

�
pm(i) +

�
N � nm(i)

�
p for any i 2 N : (10)

To avoid con�ating the e¤ect of an increase in modularity with those due to changes in the total

needs for coordination, we focus on increases that are weight-neutral, ones that do not change (10).

DEFINITION. A �weight-neutral increase in modularity of size �� of production network P re-

duces the degree of coupling from p to p (�) � (1� �) p and increases the within-module needs for
coordination from pm to

pm (�) � pm + �p
N � nm
nm � 1

for all m 2M;

where � 2 (0; 1). We denote the resulting production network by P (�).

Suppose now we start with a weakly modular production function and increase its modularity

in a weight-neutral manner. Our next result shows that if the increase is su¢ ciently large, optimal

communication changes from all or nothing to being fully fragmented : in addition to the corner

solutions, each interior solution is optimal for some communication costs.

DEFINITION. For a given production network P , optimal communication is �fully fragmented� if

for each i 2 N , there exist thresholds Mi < M�1
i < � � � < 1i such that it is optimal for agent i to

tell his state to all agents if  2
�
0; Mi

�
, to all agents in some number of modules n, 1 � n �M�1,

if  2
�
n+1i ; ni

�
, and to no one if  2 [1i ;1).
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With this de�nition at hand, we can state the result.

PROPOSITION 5. If production network P is weakly modular, and the modules di¤er in their

cohesions, there exists a � 2 (0; 1) such that for any P (�) with � 2 [�; 1): (i.) optimal communi-
cation is fully fragmented and (ii.) if it is optimal for agent i 2 N to tell his state to some module

m 2M, it is optimal for him to tell his state to the agents in his own module m (i).

The intuition for the �rst part of the proposition follows from the e¤ect of an increase in

modularity on module cohesion. As the production network becomes more modular, its modules

become more cohesive. Because the increase in cohesion is larger the more cohesive a module

is, this causes the module cohesions to diverge. At some point, the modules have such di¤erent

cohesions that the modular structure of the production network dominates the supermodularity

of expected revenue. There then exist communication costs for which it is optimal for agents to

tell their states to the agents in some modules but not to those in others. This conclusion does

not hold, though, if the modules all have the same cohesion before the increase in modularity. If

they did have the same cohesion before the increase, they would still have the same afterwards.

Communication would then be all or nothing, no matter how much modularity increased.

The second part of the proposition speaks to whom agents tell about their states. We already

know from the characterization result that agents tell their states to agents in other, more cohesive

modules before they tell them to those in other, less cohesive ones. The second part of the propo-

sition adds to this result by showing that, after a su¢ cient increase in modularity, agents tell their

states to the agents in their own modules before they tell them to those in others.

Together Propositions 4 and 5 show that an increase in modularity is associated with the frag-

mentation of communication networks and describe what form it takes. An increase in modularity

is associated with fragmentation because it makes modules more distinct from each other and does

so on the dimension that matters� their cohesions. This change can lead to the removal of commu-

nication links from agents to others in the least cohesive modules, and it can lead to the addition

of links from agents to others in their own modules and in the most cohesive, other modules.

7 Applications

We now turn to broader applications of the model. We do so in the context of the Mirroring

Hypothesis and information hiding, the two tenets of the management and software engineering

literatures on modular production. After discussing each, we return to the theoretical predictions

of the model and provide guidance for empirical work.
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7.1 Mirroring Hypothesis

The Mirroring Hypothesis conjectures that the optimal way to organize modular production is to

mirror the production function, to enable intense communication within modules and accept sparse

communication across (for references, see Footnote 6). In our setting, an organization mirrors its

production function if the principal places communication links within modules but not across.

DEFINITION. An organization �mirrors�the production function if agent i 2 N tells agent j 2 N
about his state if and only if they belong to the same module.

The Boeing Company�s experience with the 787 Dreamliner illustrates the Mirroring Hypothesis

and why it may fail.17 The Dreamliner was designed to be modular precisely because it allowed

Boeing to outsource the development and production of most modules to independent suppliers.

Suppliers delivered the �nished modules to Boeing�s factory in Everett, where its workers put them

together with the tail �n, the only major module still made by Boeing itself. To the extent that

�rm boundaries hamper communication, this way of organizing the production of the Dreamliner

is broadly in line with the Mirroring Hypothesis.18

The intention of Boeing�s organizational strategy was to speed up the development of the Dream-

liner and save production costs. Instead, persistent coordination problems among the suppliers,

and between them and Boeing, caused long delays and large cost overruns. These problems were

so severe that Boeing was forced to modify its organizational strategy. One change it made was to

bring the production of some major modules, speci�cally those forming the fuselage, back in-house

by acquiring the relevant factories from its suppliers. The other major change was to establish

an organizational unit� the Production and Integration Center� which was tasked with facilitat-

ing communication and collaboration between Boeing and its remaining, independent suppliers.19

Eventually, these e¤orts succeeded in overcoming Boeing�s development and production problems.20

Boeing�s experience illustrates that mirroring might fail because the need to coordinate across

modules can necessitate intense across-module communication, even when products are highly
17This account is based on McDonald and Kotha (2015) and Brown and Garthwaite (2016). See also Tadelis and

Williamson (2013).
18For evidence that vertical integration fosters the �ow of intangibles see, for example, Atalay et al. (2014).
19The center provided an around-the-clock communication channel between Boeing and its suppliers: �An industry

observer explained: �Suppliers as far a�eld as Australia, Italy, Japan and Russia could call in through translators
and show Boeing engineers in the center close-up images of their components using high-de�nition handheld video
cameras. ... Immediate multimedia communications have eliminated the problem of unclear email exchanges between
distant engineers who work on opposite ends of the clock.��(McDonald and Kotha 2015, p. 10)
20For instance, McDonald and Kotha (2015, p. 11): �Industry experts agree that the PIC [Production Integration

Center] was pivotal in stabilizing the 787�s supply chain, as measured by fewer delays stemming from design changes
due to �ight tests and less traveled work. (Traveled work is work assigned to a supplier but later sent to Everett, for
scheduling reasons, for Boeing workers to complete.) Thanks to improved communication and collaboration, the time
devoted to problem resolution between partner engineers and Boeing was signi�cantly shortened.�

24



modular. This is in line with the supermodularity of expected revenue that is at the heart of the

model. Across-module communication always improves decision-making but it does so especially

if agents tell their states to others in their own modules. For across-module communication to be

unpro�table nevertheless, the degree of coupling must be su¢ ciently low. Just how low it needs to

be depends on the characteristics of the production network, as described in the next proposition.

PROPOSITION 6. There exists some  > 0 such that mirroring is optimal if and only if p � p,

where p is decreasing in the module characteristics nm and pm for all m 2M.

For mirroring to be optimal, then, there cannot be any modules that consist of too many

decisions or require too much coordination. If there are, across-module communication remains

important. Arguably, this is why mirroring failed at Boeing. Its production function was mod-

ular but still complex, comprising modules that involved many decisions which required a high

degree of coordination. The model suggests that, for such a production function, across-module

communication can be essential, even when the degree of coupling is low.

This brings us back to Boeing�s decision to respond to the failure of its initial organizational

strategy by insourcing the production of the fuselage and establishing the Production and Integra-

tion Center. This response created a core-periphery structure in which the in-house modules formed

the core and the outsourced ones the periphery. To the extent that the tail �n and the fuselage

were the most cohesive ones, this response is consistent with the optimal design of communication

networks in our model. The formation of an organizational unit tasked with improving commu-

nication between Boeing and its suppliers is also in line with the formation of a core-periphery

structure, which emphasizes communication between the core and the periphery rather than within

the periphery itself. Overall, Boeing�s experience with the development and production of the

Dreamliner is broadly consistent with the model.

7.2 Information Hiding

The development of OS/360� the operating system for the System/360� illustrates the danger

of failing to economize on communication costs in large-scale development projects.21 Frederick

Brooks, the manager in charge of the project, insisted on communication of all project-relevant

information among its hundreds of programmers. He did so with the help of a continuously updated

workbook that documented all aspects of the project and to which all programmers had access at

all times.22 The problems with this approach soon became apparent (Brooks 1995, p. 77):

21This account is based on Brooks (1995) and Langlois (2002).
22See chapter seven in Brooks (1995).
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�Our project had not been under way six months before we hit another problem. The workbook

was about �ve feet thick! If we stacked up the 100 copies serving programmers in our o¢ ces in

Manhattan�s Time-Life Building, they would have towered above the building itself. Furthermore,

the daily change distribution averaged two inches, some 150 pages to be inter�led in the whole.

Maintenance of the workbook began to take a signi�cant time from each workday.�

To mitigate these problems, Brooks invested in reducing communication costs by switching to

micro�che (Brooks 1995, p. 77). In terms of the model, he reduced per-link communication cost

. The underlying problem, though, remained. In fact, the observation Brooks is best known for

today is that, because of the increasing costs of communication, adding programmers to a delayed

software project will only delay it further.23

What Brooks did not do was to engage in information hiding, to economize on communication

costs by reducing the number of communication links, rather than the cost per link. This approach,

which has since become a basic principle of computer programming, was �rst advocated by David

Parnas, who also coined the term (Parnas 1972).24 Speci�cally, Parnas suggested partitioning

programmers into organizational units in a way that minimizes technological interdependencies and

thus reduces, or even eliminates, the need for communication between them. Brooks was aware of

Parnas�notion of information hiding but dismissed it promptly out of concerns for coordination

problems between organizational units (Brooks 1995, p. 78):

�D. L. Parnas of Carnegie Mellon University has proposed a still more radical solution. His

thesis is that the programmer is most e¤ective if shielded from, rather than exposed to the details

of construction of system parts other than his own. ... While that is de�nitely sound design,

dependence upon its perfect accomplishment is a recipe for disaster.�

The question Parnas (1972) raised is how to carve an organization into informationally isolated

units without causing the coordination problems Brooks worried about. Our model provides a lens

through which to explore this question. To avoid confusion between properties of the production

function and communication network, we refer to Parnas�organizational units as teams and say

that a communication network that is partitioned into teams has a team structure.

23See the Wikipedia entries for The Mythical Man-Month (the title of Brooks�book) and for Brooks�Law. See also
Brooks (1995, pp. 17-19): �In tasks that can be partitioned but which require communication among the subtasks,
the e¤ort of communication must be added to the amount of work to be done. ... If each part of the task must be
separately coordinated with each other part, the e¤ort increases as n(n� 1)=2. ... The added e¤ort of communicating
may fully counteract the division of the original tasks and bring us to the situation of Fig. 2.4 [which shows a U-
shaped relationship between project completion time and number of workers]. ... Adding more men then lengthens,
not shortens, the schedule.�
24See, for instance, the Wikipedia entry for Information Hiding.
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DEFINITION. A communication network has a �team structure�if it partitions agents into two or

more subsets, or �teams,�such that two agents tell each other their states if and only if they belong

to the same team.

There are many possible team structures, including the type of mirroring we discussed in the

previous section, in which each module forms a separate team. The next corollary draws on di¤erent

aspects of optimal communication we derived above to characterize the type of team structures that

can be optimal.

COROLLARY 5. If an optimal communication network has a team structure, it has the following

properties: (i.) a team with two or more agents either includes all agents of a module or none of

them, (ii.) there is at most one team whose agents belong to two or more modules, and (iii.) a team

whose agents belong to two or more modules includes the agents from the most cohesive modules.

A �rst implication of the model is that if one carves up a communication network, one may cut

through a module and put its agents into di¤erent teams. In this case, though, one must go all the

way and carve the module into as many teams as there are agents in the module. This implication

follows readily from supermodularity and its push towards all-or-nothing communication.

A second implication is that there can be at most one team consisting of multiple modules.

The presence of two or more such teams violates the fact that optimal communication precludes

two-switches, which we established in Lemma 4. There may be many single-agent or single-module

teams, but there can be at most one large, multi-module one.

A third and �nal implication, which follows from the characterization result, is that if there is a

multi-module team, it consists of the most cohesive modules. The team structure then resembles a

core-periphery structure of the type we discussed above, albeit a stark one with no communication

between the core and the periphery.

This last point brings up a broader lesson the model o¤ers about information hiding. Even

though team structures can be optimal in our setting, they are special. There is no inherent reason

why such structures ought to be more pervasive than others that do not divide agents neatly into

informationally isolated units. The model suggests that instead of investing in micro�che, Brooks

could have cut communication costs by reducing across-module communication to programmers in

the least cohesive modules (and, possibly, even within-module communication in such modules).

Done optimally, the resulting communication network would have taken the form of a threshold

graph, or even a core-periphery structure with intense communication between programmers in the

most cohesive modules but little communication between those in the less cohesive ones. This sug-

gests David Parnas was right to propose cutting communication costs by removing communication
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links. The quest of how to hide information optimally, though, should go beyond team structures

and encompass core-periphery ones.

7.3 A Network Measure of Threshold Violations

Our model generates a number of predictions about communication within �rms with modular

production functions. Our goal here is to focus on the model�s core prediction, that optimal

communication networks exhibit the threshold property. Since one would not expect this property

to hold exactly, we propose a network measure of the extent to which it may be violated. An

advantage of the measure is that it does not depend on the speci�cs of the production network

beyond its modular structure, such as the needs for adaptation and coordination and the degrees of

uncertainty. Instead, the measure only needs information about what modules decisions belong to,

such as that used to construct Design Structure Matrices (see, for example, Eppinger and Browning

(2012)), and about directed communication patterns, such as that used in the systems engineering

literature (see, for example Eppinger (2015) and the references therein) and more recently within

economics (see, for instance, Yang et al. (2021) and Impink et al. (forthcoming)).

The measure is inspired by the Fulkerson-Chen-Anstee Theorem (Fulkerson 1960, Chen 1980),

which provides inequalities involving in-degrees and out-degrees of nodes that hold with equality if

and only if the network exhibits the threshold property. We show that one can interpret slack in

these inequalities as a measure of the extent to which the threshold property is violated.

The threshold property is a property of across-module communication. We say that theM�M
submatrix	 is induced by the communication matrix C if it consists of one agent from each module

and the directed communication links between them. We next describe the threshold gap of 	,

which is our measure.

To this end, denote agent i�s out-degree by �+i and agent i�s in-degree by ��i . Order the

agents by out-degree, so that agent 1 has the highest out-degree and agent M the lowest. If

multiple agents have the same out-degree, order them by their in-degree. Next, de�ne �m =P
i<m 1��i �m�1

+
P
i>m 1��i �m

, which counts how many agents are told the states of at least m

others (with an adjustment for placement in the ordering). The Fulkerson-Chen-Anstee Theorem

shows that the inequalities
Pk
m=1 �

+
m �

Pk
m=1 �m hold for each 1 � k �M � 1; and that they hold

with equality for k = M . Cloteaux et al. (2014), in turn, shows that a directed network exhibits

the threshold property if and only if each of these inequalities holds with equality.

We now de�ne the threshold gap of 	 as �(	) �
PM
m=1max

�
�m � �+m; 0

	
. Moreover, we

de�ne a swap as removing a link from agent i to agent j and adding a link from agent k to an agent
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` to whom he does not yet have a link. We can then state the result.

PROPOSITION 7. If C� is an optimal communication network, then the threshold gap �(	)

is zero for any network 	 induced by C�. If network 	 has �(	) > 0, then d�(	) =2e is the
minimum number of swaps required for the resulting communication network to have a threshold

gap of zero and thus exhibit the threshold property.

The proposition shows that the threshold gap is tied to the number of swaps needed to restore

the threshold property. If �(	) = 0, the network satis�es the property, and no swaps are needed.

If �(	) > 0, the network does not satisfy the threshold property and the minimum number of

swaps needed to restore it is given by the smallest integer weakly larger than �(	) =2. As such,

the threshold gap provides a measure of the extent to which the threshold property is violated.

8 Relaxing Assumptions

Having solved the model and explored its implications, we return to the model assumptions in

Section 3 to discuss how our results change as we relax them.

Noisy communication. Our model assumes that communication is perfectly informative. Sup-

pose, instead, that the principal chooses the precision with which agents tell others their states, with

more precise communication being more costly. Speci�cally, suppose states are normally distrib-

uted and that each agent i 2 N receives a noisy and conditionally independent signal sij = �j + �ij

about state �j � N
�
0; �2j

�
, where �ij � N (0; 1=� ij) and where � ij is the precision of the sig-

nal. The costs of agent j 2 N telling others about his state are given by
P
i6=j k

�
'ij
�
, where

'ij = � ij=
�
� ij + 1=�

2
j

�
is the signal-to-noise ratio for the signal agent i receives about agent j�s

state. The rest of the model is as in Section 3.

In Appendix B, we show that the separability result continues to hold in this setting. We further

show that if within-module communication is free, the precision of the signals an agent sends others

about his state is the same for any two receiving agents who belong to the same module, that is,

'ij = 'kj if m (i) = m (k). If k
�
'ij
�
is linear, then optimal signal-to-noise ratios are never interior

and optimal communication networks coincide with those in our main model. If, instead, k
�
'ij
�

is su¢ ciently convex so that optimal signal-to-noise ratios are interior, agents send more precise

signals to agents who belong to more cohesive modules.

Correlated states. An assumption we share with Calvó-Armengol, de Martí, and Prat (2015)

is that states are independent. If, instead, states were correlated, an agent who is told about one

state would also learn some information about the other states, reducing the bene�t of telling him
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about them. As a result, the problems of whom each agent should tell about his state would be

interdependent. In such a setting, expected revenue R (C) could still be written as the sum of the

expected revenue generated by each agent, Ri (�), that is, Lemma 2 would still hold. The expected
revenue generated by each agent, though, would depend on the entire communication network C,

causing the principal�s subproblems in Proposition 1 to become interdependent.

Re-transmission of information. Next, we explore the assumption that agents do not re-

transmit information, which is an assumption we share with Calvó-Armengol and de Martí Beltran

(2009), Calvó-Armengol et al. (2015), and Herskovic and Ramos (2020).25 This assumption cap-

tures the idea that, even though we model each state as simply a number, it refers to a complex

set of conditions and circumstances that only the associated agent can describe appropriately.

One way to relax this assumption is to allow agents to synthesize information, to combine

their knowledge of their own state with information they receive about other states. Suppose, for

instance, that after learning state �i, agent j can communicate a summary statistic of (�i; �j) to

agent k and do so at cost . A communication link from agent i to j then does not only a¤ect what

agent j knows about �i but also what he can tell others. As a result, the principal�s subproblems

in Proposition 1 become interdependent, and the separability result no longer holds.

Another way to allow for re-transmission is to suppose that after being told state �i, agent j

must incur cost  to tell �i to agent k. Agents can tell others the states they have been told about

and they can do so at the same cost at which they can tell them about their own states. In this

case, any equilibrium with re-transmission is payo¤ equivalent to one without. The separability

result in Proposition 1 continues to hold, as does the characterization result in Proposition 2.

Heterogeneous coupling. The assumption that coupling is homogenous applies to settings, such

as the laptop in Figure 1, in which the needs for coordination across any two modules are (roughly)

the same. Even though such settings are common, there are others in which some modules need

to be coordinated more closely with each other than with other modules. The law and business

schools of a university, for instance, may require more coordination with each other than with the

schools of engineering and natural sciences, and vice versa.

To explore such heterogeneous coupling, suppose we partition the set of modules into clusters

that di¤er in their degrees of coupling, such as in the example in the left panel in Figure 7. Suppose,

in particular, that each node i belongs to a module m (i), and each module m belongs to a cluster

k (m) 2 K, where K = f1; : : : ;Kg. As in the main model, the need for coordination between any
two decisions di and dj is given by pij = pm � 0 if they belong to the same module m. In contrast
25For an exploration of hierarchical communication with re-transmission see Migrow (2021).
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Figure 7: Left panel� Production network with heterogeneous coupling, where the dark shaded
areas indicate modules and the lighter ones indicate clusters of modules. Right panel� Production
network with an interface module.

to the main model, however, the need for coordination between the two decisions need no longer be

given by p if they belong to di¤erent modules. Instead, it is given by pij = pk � 0 if their modules
belong to the same cluster k, and it is given by p only if their modules belong to di¤erent clusters.

The new parameters p1; : : : ; pK , therefore, capture the degrees of coupling in the di¤erent clusters.

The rest of the model is as in Section 3.

In Appendix C we show that, even though the computations get considerably more involved, we

can still derive a closed-form expression for the agents�expected revenue in terms of the model prim-

itives, such as the one in Lemma 3. This result, in turn, allows us to show that the characterization

result in Proposition 2 generalizes as follows.

PROPOSITION 8. There exist thresholds �ki � 0 such that it is optimal for agent i 2 N to tell his

state to agent j 2 N with m (j) 6= m (i) and m (j) in cluster k 2 K if and only if xm(j) � �ki .

Optimal communication is, therefore, still determined by threshold rules on module cohesions:

each agent tells his state to the agents in modules whose cohesion is su¢ ciently high. The only

di¤erence is that how high cohesion needs to be depends on the characteristics of the cluster that

the receiving agent belongs to as well as whether agent i�s module is in that cluster.

Interfaces. A feature of modular production that is important in some applications is the presence

of an interface module� a module that all other modules have to be tightly coordinated with. To

return to the university example, the various schools of a university may all need to be coordinated

more closely with the o¢ ce of the provost than with each other. The extension to heterogeneous

coupling allows us to incorporate this feature.

Notice, in particular, that the extension allows for the across-cluster degree of coupling p to

be higher than the within-cluster degrees of coupling p1; : : : ; pK . We can, therefore, specify a

production network, such as the one in the right panel in Figure 7, in which the set of modules

31



is divided into one cluster with a single module and another cluster with all the other ones. The

across-cluster degree of coupling then captures how tightly the modules in the multi-module cluster

must be coordinated with the single module, and the within-cluster degree of coupling captures

how well they must be coordinated with each other. Setting the across-cluster degree of coupling

higher than the within-cluster one turns the single module into an interface module.

Because this speci�cation is a special case of the extension with heterogeneous coupling, Proposi-

tion 8 still applies. Even with an interface module, optimal communication networks are determined

by threshold rules on module cohesion.

General production networks. Even though we focus on modular production, it is instructive to

examine how our results change if we allow for general production networks. To this end, suppose

the production network P can take any form, provided it still satis�es pii = 0, pij = pji, andPN
j=1 pij < 1 for all i; j 2 N . The proofs of Lemma 1, Lemma 2, and Proposition 1 allow for such

production networks, so the separability result continues to hold. As such, the principal can still

determine an optimal communication network by considering each agent separately. Moreover, we

show in Proposition 9 in Appendix C that the principal�s objective is still supermodular and can,

therefore, be maximized using standard algorithms.

What can no longer hold is the characterization of optimal communication networks in Propo-

sition 2, which uses the presence of modules. Optimal communication networks can now take many

forms and need not exhibit the threshold property. The supermodularity of the principal�s objective,

though, ensures that comparative statics are still monotone. As in the main model, the principal

will only ever respond to an increase in the value of adaptation or the need for coordination, or a

decrease in the cost of communication, by adding communication links.

Incentive con�icts. Lastly, we explore how the results change if we depart from our team theoretic

approach and allow for incentive con�icts. To this end we assume that agents have a constant bias,

as in Hagenbach and Koessler (2010), Galeotti et al. (2013), and much of the literature on cheap

talk that builds on Crawford and Sobel (1982). Speci�cally, suppose each agent i 2 N cares about

r (d1; : : : ; dN )+ 2aidibi, where r (d1; : : : ; dN ) is the �rm�s revenue (1) and bi is agent i�s bias, which

is common knowledge. The rest of the model is as in Section 3.

We study this extension in Appendix D, where we show that the characterization of optimal

communication networks in Proposition 2 continues to hold. The reason is that while the agents�

biases distort their decisions, they do not distort how their decisions vary with their states. As a

result, the agents�biases do not a¤ect the bene�ts of communication links and, thus, do not a¤ect

the design of optimal communication networks.
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The extension focuses on how incentive con�icts a¤ect decision-making and, through this chan-

nel, impact optimal communication networks. In contrast to Hagenbach and Koessler (2010) and

Galeotti et al. (2013), it does not allow for cheap talk communication, and thus does not explore

how incentive con�icts a¤ect the agents�incentives to engage in strategic communication.

9 Conclusions

The structure of technology drives the organization of �rms. Based on this premise, this paper

explored how the rise of modular production shapes the pattern of communication and the �ow of

information inside of �rms. We conclude by suggesting several avenues for future research.

One avenue is to explore the organization of �rms with non-modular production functions,

especially that of multidivisional �rms. Alfred Chandler documented the central role of multidivi-

sional �rms in the development of the US economy and spurred a large literature examining their

organization (Chandler 1962). A goal of this literature is to understand the �rms�choice between

M, U, and matrix forms, between organizing by product, function, or a combination of both (see,

for instance, Maskin et al. (2000)). Our paper suggests that this choice is shaped by the �rms�

production functions. These production functions often have an overlapping community structure

rather than a non-overlapping one. The R&D decisions for one product, say, must be closely coor-

dinated with both the manufacturing and marketing decisions for the same product and the R&D

decisions for the �rm�s other products. Even though such production functions are not modular,

they fall within the class of general production functions we examined in the extensions. The fact

that the separability result continues to hold serves as a useful starting point for an exploration of

when M, U, and matrix forms are optimal and what determines the choice among them.

A second avenue for future research is to explore the broader impact of modular production on

the organization of �rms. As we noted in the introduction, Baldwin and Clark (1997) observe that,

while the introduction of the System/360 did lead to immediate changes in IBM�s internal organi-

zation, its more enduring impact was to cause entry into the computer industry in the following

decades. The entrants were often small, entrepreneurial �rms that focused on the development and

production of individual modules and whose innovative products allowed them to compete success-

fully with IBM�s own, in-house module makers. In this telling, the introduction of the System/360

in the 1960s sowed the seeds for the subsequent disintegration of IBM and the other large main-

frame manufacturers and gave rise to the competitive and innovative computer industry of today

(see Footnote 8). There are many reasons why modular production may a¤ect the boundaries of

�rms and the structure of industries. We leave their exploration for future research.
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A �nal avenue for future research goes beyond the impact of modular production on organization

and asks what explains its rise in the �rst place. Herbert Simon argued that modularity facilitates

adaptation by con�ning adaptive changes to individual modules within a system (Simon 1962). In

line with this intuition, �rms such as IBM explain their development of modular products with the

need to adapt quickly to the changing capabilities of their suppliers and needs of their customers.

Yet, a full explanation for the rise of modular production also needs to account for its costs. It may

be easier to adapt a modular product to its environment but, for a given environment, one would

expect limitations in across-module interactions to a¤ect its performance. After all, products have

not always been modular, and even today many are not, suggesting that such designs also have

signi�cant downsides. Answering the questions of when and why �rms develop modular products,

and what trade-o¤s they face when they are doing so, would require moving beyond one of the

foundational economic modeling assumptions, that production functions are given by nature and

not designed by �rms. As such, it is the most challenging question this paper highlights and, like

the other open questions we sketched above, we leave it for future research.
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Appendix A: Proofs

We �rst introduce some notation. Throughout the appendix, for notational compactness, we will

denote by Ei [�] the expectation over � = (�1; : : : ; �N ) given the information agent i has under

communication network C. That is, for a random variable Z, Ei [Z] � E
�
ZjC(i)

�
. Next, a

strategy for agent i is a mapping ~di :
�
��; �

�N ! �
�D;D

�
, where ~di (�) denotes the decision that

agent i makes in state �. We denote a strategy pro�le by ~d = �Ni=1 ~di. To ensure equilibrium
strategies involve interior decisions, de�ne p = maxi

P
j pij , and assume that D � �

1�p .

LEMMA 1. Equilibrium decisions are unique and given by

d�i =
NX
j=1

aj!ij (Cj) �j for all i 2 N ;

where !ij (Cj) denotes the ijth entry of (I � (diagCj)P (diagCj))
�1.

Proof of Lemma 1. This proof parallels the approach of Golub and Morris (2017), Appendix

A1: We take the communication network C as given and show that d� = �Ni=1d�i is the unique
strategy pro�le that survives iterated elimination of strictly dominated strategies and is therefore

the unique Bayesian-Nash equilibrium.

Step 1: Show that there is a unique Bayesian-Nash equilibrium by showing that there is a unique

strategy pro�le that survives iterated elimination of strictly dominated strategies.

Given any C, the game played by the agents is a game of strategic complements: if we denote

d̂i

�
�; ~d�i

�
= ai�i +

NX
j=1

pijEi

h
~dj (�)

i
;

agent i�s best response to the strategy pro�le ~d�i in state �, then d̂i is increasing in each ~dj under

the partial order given by ~dj � ~d0j if and only if ~dj (�) � ~d0j (�) for all �.

De�ne the set Si (k) as the set of i�s pure strategies surviving k rounds of iterated elimination

of strictly dominated strategies. Since di (�) 2
�
�D;D

�
, the �rst set in the sequence is

Si (0) =
n
~di

����D � ~di (�) � D for all �
o
.

Next, as this is a game of strategic complements, an upper bound on Si (1) is i�s best response to

the maximal strategy pro�le ~d�i 2 S�i (0), where ~d�i = �j 6=i ~dj and S�i (k) =
Q
j 6=i Sj (k), and a

lower bound on Si (1) is i�s best response to the minimal strategy pro�le ~d�i 2 S�i (0). That is,

Si (1) =

8<: ~di

��� ai�i � NX
j=1

pijD � ~di (�) � ai�i +
NX
j=1

pijD

9=; .
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Next, suppose that for k > 1, the set Si (k) takes the form

Si (k) =
n
~di

��� dki (�) � ~di (�) � d
k
i (�) for all �

o
,

where

d
k
i (�) = ai�i +

k�1X
m=1

�im +
NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD

dki (�) = ai�i +
k�1X
m=1

�im �
NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD,

and

�im =

NX
j1=1

� � �
NX

jm=1

pij1pj1j2 � � � pjm�1jmajmEiEj1 � � �Ejm�1 [�jm ] .

Then an upper bound on Si (k + 1) is agent i�s best response to the maximal strategy pro�le
~d�i 2 S�i (k), and a lower bound on Si (k + 1) is agent i�s best response to the minimal strategy

pro�le ~d�i 2 S�i (k). That is,

Si (k + 1) =
n
~di

��� dk+1i (�) � ~di (�) � d
k+1
i (�) for all �

o
.

To show that the upper and lower bounds of Si (k) converge to the same value, we show that

lim
k!1

NX
j1=1

NX
j2=1

� � �
NX
jk=1

pij1pj1j2 � � � pjk�1jkD = 0.

This term converges to zero as long as the row sum of the production matrix to the kth power,

P k, converges to zero as k !1. This result follows since
PN
j=1 pij < 1 for all i, and therefore the

spectral radius of P is strictly less than one. By the sandwich theorem, we therefore have

lim
k!1

dki (�) = lim
k!1

d
k
i (�) = ai�i +

1X
m=1

�im.

This result implies that limk!1 Si (k) is a singleton for all i. As this is a supermodular game, the

resulting strategy pro�le is the unique Bayesian-Nash equilibrium of the game.

Step 2: Show that the unique Bayesian-Nash equilibrium strategy pro�le is a linear combination

of �1; : : : ; �N , that is, d�i (�) =
PN
j=1 �ij�j for some scalars f�ijg

N
j=1.

First, observe that EiEj1 � � �Ejm�1 [�jm ] is zero if some j 2 fi; j1; : : : ; jm�1g does not know �jm

under C, and EiEj1 � � �Ejm�1 [�jm ] = �jm if all j 2 fi; j1; : : : ; jm�1g know �jm under C. This

result follows by an induction argument and the law of iterated expectations. For the m = 1
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case, Ei [�j1 ] = 0 if i does not know �j1 , and Ei [�j1 ] = �j1 if i does know �j1 . Next, suppose

all j 2 fi; j1; : : : ; jm�1g know �jm+1 . Then EjmEiEj1 � � �Ejm�1
�
�jm+1

�
= Ejm

�
�jm+1

�
, which is 0

if jm does not know �jm+1 and is �jm+1 if jm does know �jm+1 . Finally, suppose there is some

j 2 fi; j1; : : : ; jm�1g who does not know �jm+1 . Then EjmEiEj1 � � �Ejm�1
�
�jm+1

�
= Ejm [0] = 0.

The result in the previous paragraph ensures that each �im from Step 1 is a linear combination

of �1; : : : ; �N , and therefore d�i (�) = ai�i +
P1
m=1 �im =

PN
j=1 �ij�j for some scalars f�ijg

N
j=1.

Step 3: Show that �ij = aj!ij (Cj) �j , where !ij (Cj) denotes the ijth entry of the matrix

(I � (diagCj)P (diagCj))
�1.

The network associated with (diagCj)P (diagCj) is the subgraph of the production network

induced by nodes that know �j , and therefore !ij (Cj) is the sum of the values of all walks from

node i to node j on the production network that pass only through nodes that know �j .

Note that pij1pj1j2 � � � pjm�1jm describes the value of a walk of length m from node i to node

jm on the production network. If any node in a walk ij1; j1j2; � � � ; jm�1jm does not know �jm ,

then from the argument in step 2, EiEj1 � � �Ejm�1 [�jm ] = 0. Otherwise, EiEj1 � � �Ejm�1 [�jm ] = �jm .

Thus, �im is the sum of the values of all walks of lengthm from node i to node jm on the production

network that pass only through nodes that know �jm . The result then follows. �

COROLLARY 1. The weight ai!ii (Ci) that decision d�i puts on its state �i satis�es !ii (Ii) ai = ai,

where Ii is the ith row of an N �N identity matrix, and it is increasing and supermodular in Ci.

Proof of Corollary 1. This result follows from the proofs of Lemma 1 and Proposition 9 in

Appendix C. �

LEMMA 2. Under equilibrium decision-making, expected revenue is given by

R (C) � E [r (d�1; : : : ; d�N )] =
NX
i=1

aiCov (d
�
i ; �i) ,

where Cov (d�i ; �i) = ai�
2
i!ii (Ci).

Proof of Lemma 2. Given equilibrium decision-making, revenue in state � can be written as

NX
i=1

aid
�
i �i �

NX
i=1

d�i

24d�i � ai�i � NX
j=1

pijd
�
j

35 .
Next, substitute in the best responses d�i = ai�i +

PN
j=1 pijEi

h
d�j

i
. The term in square brackets is

therefore equal to
PN
j=1 pij

h
Ei

h
d�j

i
� d�j

i
, and expected revenue can be written as

NX
i=1

aiE [d
�
i �i]�

NX
i=1

NX
j=1

pijE
�
d�i
�
Ei
�
d�j
�
� d�j

��
=

NX
i=1

aiE [d
�
i �i]�

NX
i=1

NX
j=1

pijE

264Ei [d�i ] �Ei �d�j�� Ei �d�j��| {z }
=0

375 ,
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where the �rst equality holds by the law of iterated expectations. The result follows because

Cov (d�i ; �i) = E [d
�
i �i]� E [d�i ] E [�i], and E [�i] = 0 for all i. �

PROPOSITION 1. An optimal communication network solves the principal�s problem (2) if and

only if it solves the N independent subproblems

max
Ci

Ri (Ci)� 
X
j 6=i

cij .

Proof of Proposition 1. Optimal communication networks maximize expected revenues mi-

nus communication costs. Using the expected revenue expression derived in Lemma 2, optimal

communication networks solve

max
C

24 NX
i=1

a2i�
2
i!ii (Ci)� 

NX
i=1

X
j 6=i

cij

35 .
Since !ii (Ci) depends only on Ci and not the rest of the communication network C, and the

objective is additively separable in i, a communication network C� solves this problem if and only

if C�
i solves

max
Ci

a2i�
2
i!ii (Ci)� 

X
j 6=i

cij

for all i 2 N . �

LEMMA 3. Agent 1�s expected revenue is given by

R1 (C1) = a21�
2
1

 
1 + (p1 � p)x1 (~n1)

1 + p1
+

px1 (~n1)
2

1� p
PM
m=1 ~nmxm (~nm)

!
, (11)

where

xm (~nm) =
1

1 + p� (~nm � 1) (pm � p)
for m 2M,

and ~nm is the number of agents in module m who know agent 1�s state.

Proof of Lemma 3. Suppose ~n1 � 1 nodes in module 1 know �1 and ~nm � 0 nodes in module

m know �1 for m > 1. The restriction that ~n1 � 1 re�ects the fact that node 1 knows �1. The

labeling of the other modules is immaterial, so we will denote the modules m > 1 for which ~nm � 1
as modules 2; : : : ; `. From Lemma 2, the expected revenue generated by agent 1 is R1 (C1) =

a21�
2
1!11 (C1). We will derive !11 (C1) in four steps.

Step 1: Derive a representation of !11 (C1) as the value of walks on a modi�ed module-level

production network, and show that !11 (C1) is the (1; 1) entry of a matrix Q�1.
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First, let us suppose ~n1 � 2. The value !11 (C1) is the sum of the value of all walks from node

1 back to itself on the subgraph of the production network consisting of nodes who know state �1.

Denote this value by v0. Next, let vk be the sum of the values of all walks from an informed node

in module k to node 1 on this same subgraph. These values can be written recursively as a system

of equations.

v0 = 1 + p1 (~n1 � 1) v1 + p~n2v2 + � � �+ p~n`v`

v1 = p1v0 + p1 (~n1 � 2) v1 + p~n2v2 + � � �+ p~n`v`
...

v` = pv0 + p (~n1 � 1) v1 + p~n2v2 + � � �+ p` (~n` � 1) v`.

The right-hand side of the �rst equation describes the value of all walks from node 1 back to

node 1 in the following way: the �rst term, 1, is the value of walks that pass only through node

1; the second term, p1 (~n1 � 1) v1, is the value of all walks that initially pass to one of the ~n1 � 1
other informed nodes in module 1; the k+1 term, p~nkvk, is the value of all walks that initially pass

to one of the ~nk informed nodes in module k. The right-hand side of the second equation captures

the value of all walks from an informed node j 6= 1 in module 1 back to node 1 in the following

way: the �rst term is the value of all walks that initially pass back to node 1; the second term is

the value of all walks that initially pass to one of the other ~n1� 2 informed nodes in module 1; the
k+1 term is the value of all walks that initially pass to one of the ~nk informed nodes in module k.

The remaining equations are interpreted analogously.

This system of `+ 1 equations can be written in matrix form:2666666664

1

0

0
...

0

3777777775
=

2666666664

1 �p1 (~n1 � 1) �p~n2 � � � �p~n`
�p1 1� p1 (~n1 � 2) �p~n2 � � � �p~n`
�p �p (~n1 � 1) 1� p2 (~n2 � 1) � � � �p~n`
...

...
...

. . .
...

�p �p (~n1 � 1) �p~n2 � � � 1� p` (~n` � 1)

3777777775

2666666664

v0

v1

v2
...

v`

3777777775
.

Denote this (`+ 1) � (`+ 1) matrix by Q. Then v0 is the (1; 1) entry of the inverse matrix Q�1,
and by the de�nition of a matrix inverse, v0 = det ~Q=detQ, where ~Q is the matrix obtained by

removing the �rst row and column of Q.

Next, to account for the possibility of ~n1 = 1 (i.e., agent 1 does not tell his state to others in

his own module), we can de�ne the `� ` matrix R and the (`� 1)� (`� 1) matrix ~R, where R is

the matrix obtained by removing the second row and column of Q, and ~R is the matrix obtained
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by removing the �rst and second rows and columns of Q. In this case,

v0 =
det ~R

detR
=
(1 + p1) det ~R

(1 + p1) detR
=
det ~Q

detQ
,

where the �nal equality follows by the Laplace expansion. In either case, it therefore su¢ ces to

solve for det ~Q=detQ.

Step 2: Show that detQ = (1+p1)(1�p1(~n1�1))
x2(~n2)���x`(~n`)

�
1� �

P`
m=2 ~nmxm (~nm)

�
, where � = p

1�p~n1x1(~n1) .

We can write Q in block-matrix form

"
A B

C D

#
, where

A =

"
1 �p1 (~n1 � 1)
�p1 1� p1 (~n1 � 2)

#
; B =

"
�p~n2 � � � �p~n`
�p~n2 � � � �p~n`

#

C =

2664
�p �p (~n1 � 1)
...

...

�p �p (~n1 � 1)

3775 ; D =

2664
1� p2 (~n2 � 1) � � � �p~n`

...
. . .

...

�p~n2 � � � 1� p` (~n` � 1)

3775 .
By the block matrix determinant formula, detQ = det (A) det

�
D�CA�1B

�
. We �rst calcu-

late D�CA�1B. The expression for D�CA�1B can be written as the sum of a diagonal matrix

and a rank-one matrix:

D�CA�1B = X�1 � �uvT ,

where � = p
1�p~n1x1(~n1) , and

X�1 =

2664
x2 (~n2)

�1 � � � 0
...

...
...

0 � � � x` (~n`)
�1

3775 ;u =
2664
1
...

1

3775 ;v =
2664
~n2
...

~n`

3775 .
By the matrix determinant lemma,

det
�
D�CA�1B

�
=
�
1� �vTXu

�
detX�1 =

1� �
P`
m=2 ~nmxm (~nm)

x2 (~n2) � � �x` (~n`)
.

We therefore have that

detQ =
(1 + p1) (1� p1 (~n1 � 1))

x2 (~n2) � � �x` (~n`)

 
1� �

X̀
m=2

~nmxm (~nm)

!
.

Step 3: Show that det ~Q = 1�p1(~n1�2)
x2(~n2)���x`(~n`)

�
1� ~�

P`
m=2 ~nmxm (~nm)

�
, where ~� = p

1�p(~n1�1)y1(~n1) and

y1 (~n1) =
1

1�p1(~n1�2)+p(~n1�1) .
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This step proceeds similarly to step 2. Recall that ~Q is the matrix derived by eliminating the �rst

row and column from the matrix Q. Partition ~Q into the block matrix

"
~A ~B

~C ~D

#
by letting ~A =

1 � p1 (~n1 � 2) and setting ~B, ~C, and ~D accordingly. Then det ~Q = det
�
~A
�
det
�
~D� ~C~A

�1~B
�
.

Again, we can write

~D� ~C~A
�1~B = X�1 � ~�uvT ,

whereX�1, u, and v are the same as in step 2, ~� = p
1�p(~n1�1)y1(~n1) , and y1 (~n1) =

1
1�p1(~n1�2)+p(~n1�1) .

As above, the matrix determinant lemma,

det
�
~D� ~C~A

�1~B
�
=
�
1� ~�vTXu

�
detX�1 =

1� ~�
P`
m=2 ~nmxm (~nm)

x2 (~n2) � � �x` (~n`)
,

then gives us the result.

Step 4. Show that !11 (C1 (`)) =
1+(p1�p)x1(~n1)

1+p1
+ px1(~n1)

2

1�p
P`
m=1 ~nmxm(~nm)

.

By the preceding three steps,

!11 (C1 (`)) = v0 =
det ~Q

detQ
=

(1� p1 (~n1 � 2))
�
1� ~�

P`
j=2 ~njxj (~nj)

�
(1 + p1) (1� p1 (~n1 � 1))

�
1� �

P`
j=2 ~njxj (~nj)

�
=

1 + (p1 � p)x1 (~n1)
1 + p1

+
px1 (~n1)

2

1� p
P`
m=1 ~nmxm (~nm)

=
1 + (p1 � p)x1 (~n1)

1 + p1
+

px1 (~n1)
2

1� p
PM
m=1 ~nmxm (~nm)

,

where the last equality holds because ~nm = 0 for all m > `. The lemma then follows because

R1 (C1 (`)) = a21�
2
1!11 (C1). �

PROPOSITION 2. There exist thresholds �i � 0 and �i � 0 such that it is optimal for agent i 2 N
to tell his state to a di¤erent agent j 2 N if and only if :

(i.) agent j belongs to the same module m (j) = m (i) with coordination need pm(i) � �i, or

(ii.) agent j belongs to a di¤erent module m (j) 6= m (i) with cohesion xm(j) � �i.

Threshold �i is increasing in , decreasing in a2i�
2
i , p, pm, and nm for any m 2M, and independent

of a2k�
2
k for any k 2 Nnfig. The comparative statics of threshold �i are the same, except that it is

independent of pm(i).

Proof of Proposition 2. Fix a node i. First note that agent i�s expected revenue expression is

given by Lemma 3, mutatis mutandis:

Ri (Ci) = a2i�
2
i

 
1 +

�
pm(i) � p

�
xm(i)

�
~nm(i)

�
1 + pm(i)

+
pxm(i)

�
~nm(i)

�2
1� p

PM
m=1 ~nmxm (~nm)

!
.
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This expression is convex in ~nm for each m, which implies that in any optimal communication

network, agent i tells his state to all the agents in a module or to none of them.

Next, let K be an arbitrary set of modules, de�ne S (K) =
P
m2Knfm(i)g nmxm, and denote

by Ci (K) the row of the communication matrix in which agent i tells �i to agent j if and only

if m (j) 2 K. Then Ri (Ci (K)) can be written as an increasing and convex function of S (K),
h (S (K)).

Now suppose that it is optimal to inform all modules in Knfm (i)g. Then it must be the case
that for all m 2 Knfm (i)g

 � h (S (K))� h (S (Knm))
nm

= xm
h (S (K))� h (S (Knm))

S (K)� S (Knm) < xmh
0 (S (K)) ,

where the last inequality holds because h is convex. Suppose further that it is not optimal to also

inform some module m0 62 Kn fm (i)g. Then it must be the case that

 >
h (S (K[fm0g))� h (S (K))

nm0
= xm0

h (S (K[fm0g))� h (S (K))
S (K[fm0g)� S (K) > xm0h0 (S (K)) .

These two inequalities imply that xm > xm0 for all modules m that are optimally told about �i and

modules m0 that are optimally not told about �i. In other words, there is some threshold �i such

that agent i tells �i to agent j in module m (j) 6= m (i) if and only if xm(j) � �i. This establishes

part (ii:)

Next, suppose it is optimal for agent i to tell �i to agent j if and only if m (j) 2 K. Then
m (i) 2 K if and only if

Ri (Ci (K[fm (i)g))�Ri (Ci (Knfm (i)g))
nm(i) � 1

� ,

Since the expression on the left-hand side of the inequality is increasing in pm(i), this establishes

part (i:).

The comparative statics follow from Proposition 9 in Appendix C, which shows that for general

production networks P satisfying pii = 0, pij = pji, and
PN
j=1 pij < 1, the principal�s objective

for the subproblem involving who agent i should tell about �i exhibits increasing di¤erences in�
fcijgj ; a2i�2i ; fpijgij ;�

�
. By Topkis�s theorem, then, C�i is increasing in a2i�

2
i and each pij ,

j 6= i, and it is decreasing in . It is therefore increasing in a2i�
2
i , p, pm, and �, and therefore the

thresholds are decreasing in these parameters. To establish the comparative static with respect to

nm, consider an expanded production network that is the same as P except that it has an additional

�ghost�node ` in module m but with p`i = 0 for all i 2 N . The optimal C�i does not change with
the inclusion of this ghost node. By Topkis�s theorem, C�i is increasing in p`i for all i 2 N and
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is therefore higher when p`i = pm for all i such that m (i) = m and p`i = p for all i such that

m (i) 6= m than it is when p`i = 0 for all i. Adding a node to module m, therefore, increases C�i . �

COROLLARY 2. Suppose agent i�s module m (i) is at least as cohesive as another module m, that

is, xm(i) � xm. It cannot be optimal for agent i to tell his state to the agents in module m but not

to the other agents in module m (i).

Proof of Corollary 2. We will show that if it is optimal for agent i to tell his state to agents in

module m with xm(i) � xm, it must also be optimal for agent i to tell his state to the other agents

in m (i).

Suppose it is optimal for agent i to tell his state to all agents in the set of modules K�. Suppose
there exists m such that xm(i) � xm, and m 2 K� but m (i) 62 K�. De�ne K = K�n fmg. Since
m 2 K�, we must have that

 � Ri (Ci (K [ fmg))�Ri (Ci (K))
nm

.

It remains to show that if xm(i) � xm, then

Ri (Ci (K� [ fm (i)g))�Ri (Ci (K�))
nm(i) � 1

� Ri (Ci (K [ fmg))�Ri (Ci (K))
nm

,

which implies that agent i would want to tell his state to agents in his own module, contradicting

the claim that m (i) 62 K�. Suppose xm(i) � xm. Then

Ri (Ci (K� [ fm (i)g))�Ri (Ci (K�))
nm(i) � 1

� a2i�
2
i

p
�

1
1+p

�2
1� pnm(i)xm(i) � pnmxm � p

P
`2K n`x`

p

1� p 1
1+p � pnmxm � p

P
`2K n`x`

nm(i)xm(i) � 1
1+p

nm(i) � 1

� a2i�
2
i

p
�

1
1+p

�2
1� pnm(i)xm(i) � pnmxm � p

P
`2K n`x`

pxm(i)

1� p 1
1+p � pnmxm � p

P
`2K n`x`

� a2i�
2
i

p
�

1
1+p

�2
1� p 1

1+p � pnmxm � p
P
`2K n`x`

pxm

1� p 1
1+p � p

P
`2K n`x`

=
Ri (Ci (K [ fmg))�Ri (Ci (K))

nm

where the �rst inequality follows because xm(i) >
1
1+p , and the second inequality follows because

nm(i)xm(i) � 1
1+p �

�
nm(i) � 1

�
xm(i). �

COROLLARY 3. Optimal communication networks have the threshold property.

Proof of Corollary 3. This result follows from Proposition 2 with si = �i and rj = xm(j) for all

i; j. �
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LEMMA 4. A communication network with the threshold property contains no two-switches or

directed three-cycles.

Proof of Lemma 4. To establish this result, we will use Theorem 1 of Cloteaux et al. (2014),

which establishes a forbidden subgraph characterization of threshold directed graphs. To do so, we

�rst introduce two de�nitions.

Let C be a communication network, and say that 	 is induced by C if 	 is a subgraph of C

consisting of M nodes fi1; : : : ; iMg with m (i`) = ` and m;m0 entry  mm0 = cimim0 if m 6= m0 and

 mm = 0. The network 	 is a threshold directed graph if for all m;m0;m00 distinct, if
P
`  m` �P

`  m0` (and
P
`  `m �

P
`  `m0 if

P
`  m` =

P
`  m0`), then  m0m00 = 1 implies  mm00 = 1.

We begin with an alternate characterization of threshold directed graphs that parallels our

threshold condition.

Step 1: Show 	 is a threshold directed graph if and only if there exists two sequences of nonnegative

real numbers f~s1; : : : ; ~sMg and f~r1; : : : ; ~rMg such that  mm0 = 1 if and only if ~sm � ~rm0 .

Suppose there exists f~s1; : : : ; ~sMg and f~r1; : : : ; ~rMg such that  mm0 = 1 if and only if ~sm � ~rm0 .

Arrange the nodes so that ~s1 � ~s2 � � � � � ~sM , and ~sm = ~sm+1 implies ~rm � ~rm+1, and de�ne

�m = max` 6=m f`j ~s` � ~rmg. Let

�m =

MX
`=1

 `m =

(
�m

�m � 1
if �m � m

if �m > m.

Then  mm0 = 1 if and only if ~sm � ~rm0 if and only if m � �m0 if m < m0 and m � �m0 + 1 if

m > m0. We therefore have that

 mm0 =

8>><>>:
1

1

0

if m < m0 and m � �m0

if m > m0 and m � �m0 + 1

otherwise,

and therefore by Corollary 3 of Cloteaux et al. (2014), 	 is a threshold directed graph.

Conversely, suppose 	 is a threshold directed graph. If we arrange the nodes so that
P
`  m` �P

`  m+1;` (and
P
`  `m �

P
`  `;m+1 if

P
`  m` =

P
`  m+1;`) and let �m =

P
`  `m, then by

Corollary 3 of Cloteaux et al. (2014),

 mm0 =

8>><>>:
1

1

0

if m < m0 and m � �m0

if m > m0 and m � �m0 + 1

otherwise.

Let ~sm = m and ~rm = min` f`j `m = 1g. Then  mm0 = 1 if ~sm � ~rm0 and  mm0 = 0 otherwise,

establishing the claim.
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Step 2: Show that if C has the threshold property, for all 	 induced by C, 	 is a threshold directed

graph.

This step follows from step 1 by setting ~sm = sim and ~rm = rim for all m.

Step 3: Argue that if C has the threshold property, it has no two-switches or directed three-cycles.

By Theorem 1 of Cloteaux et al. (2014), 	 is a threshold directed graph if and only if it has no

two-switches or directed three-cycles. Suppose C has a two-switch or a directed three-cycle. Then

consider 	 induced by C containing the two-switch or the directed three-cycle. Then 	 is not a

threshold directed graph, so C does not have the threshold property. �

COROLLARY 4. A communication network is not optimal if it is a tree or matrix.

Proof of Corollary 4. Suppose C is a tree. Let i denote an agent in the module in level 1, j

and k be agents in two di¤erent modules in level 2, and ` be an agent in level 3 whose unique

predecessor module is m (j). This is without loss of generality, since levels 2 and 3 have at least

two modules with a unique predecessor module. Then agent i tells his state to agent k but not to

agent `, and agent j tells his state to agent ` but not to agent k. The communication network C

therefore contains a two-switch and by Lemma 4 is not optimal.

Next, suppose C is a matrix. Consider two agents i and k in di¤erent modules but in the same

horizontal team. Consider a di¤erent horizontal team containing two agents j and ` in two di¤erent

modules. Since any two modules in the same horizontal team are in di¤erent vertical teams, then

of the four modules containing i; j; k, and `, either these modules are partitioned into two vertical

teams, or they are partitioned into more than two vertical teams.

Suppose they are partitioned into two vertical teams. Suppose agent i�s module and agent j�s

module are in one vertical team, and agent k�s module and agent `�s module are in another vertical

team. Then i tells his state to k but not `, and j tells his state to ` but not k, so C contains a

two-switch and is therefore not optimal. Suppose instead i; j; k, and ` are partitioned into at least

three vertical teams. Then at least one module from each horizontal team, the modules containing

i and j, say, must be in a vertical team without any of the other four modules containing i; j; k,

or `. Then i tells his state to k but not `, and j tells his state to ` but not k, so C contains a

two-switch and is therefore not optimal. �

PROPOSITION 3. Suppose that for any agents i; j 2 N , �i � �j if and only if xm(i) � xm(j).

Any optimal communication network then has a core-periphery structure in which the agents who

belong to the most cohesive modules form the core.

Proof of Proposition 3. We construct a partition of the set of agents that has a core-periphery

structure as described. Label the modules by their cohesion, with the most cohesive labeled 1 and
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the least cohesive labeled M , that is x1 � x2 � � � � � xM . Find the highest k 2 f2; : : : ;Mg such
that some agent j in module k tells his state to all agents in module k�1. The ordering of modules
by cohesion is unique up to modules with the same cohesion. We deal with the case where no such

k exists below.

We �rst show that agents in modules 1; : : : ; k � 1 are in the core. By Proposition 2, agent j
tells his state to all agents in modules 1; : : : ; k � 1 and, since �j � �i for all agents i in modules

weakly more cohesive than j�s module,then all agents in modules 1; : : : ; k � 1 tell their state to all
agents in other modules 1; : : : ; k � 1. Thus we say modules 1; : : : ; k � 1 are in the core.

Next we examine whether agents in module k are in the core. If all agents in module k � 1
tell their state to agents in module k, since �i � �j if and only if xm(i) � xm(j), then all agents in

modules 1; : : : ; k � 1 tell their state to all agents in module k. Then any agents in module k that
tell their state to agents in modules 1; : : : ; k � 1 are in the core. By Proposition 2, any agents in
module k that do not tell their state to agents in module k � 1 also do not inform any agents in

modules k+1; : : : ;M , and we say they are in the periphery. If instead some agents in module k�1
do not tell their state to agents in module k then, by Proposition 2, those agents in module k�1 do
not tell their state to any agents in modules k; : : : ;M . Since �i � �j if and only if xm(i) � xm(j),

then agents in module k also do not tell their state to any agents in modules k + 1; : : : ;M and we

say they are in the periphery.

We next show that agents in modules k+1; : : : ;M do not tell their states to agents in modules

k; : : : ;M outside their own module, and we say they are in the periphery. By de�nition of module

k, there is no agent in module k+1 who tells his state to agents in module k. Then by Proposition

2 and since �i � �j if and only if xm(i) � xm(j), no agent in module k + 1; : : : ;M tells his state to

any agents in modules k; : : : ;M , aside from possibly those agents in his own module.

If there is no k 2 f2; : : : ;Mg such that some agent j in module k tells his state to all agents in
module k� 1, then no agent in module 2 tells his state to any agent in module 1. By Proposition 2
and since �i � �j if and only if xm(i) � xm(j), then no agent in modules 2; : : : ;M tells their state

to any agent outside their own module. We say agents in module 1 are in the core, and all other

agents are in the periphery. �

For the next lemma, we introduce a de�nition.

DEFINITION. Let 	 be a directed graph consisting of M nodes. We say that 	 has a �generalized

core-periphery structure� if its nodes can be partitioned into a core (denoted MC), a periphery

(denoted MP ), and a suburban periphery (denoted MSP ), at least two of which are non-empty,

satisfying the following properties:
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(i:) the core is a clique:  mm0 = 1 for all m;m0 2MC ,

(ii:) the periphery is an independent set:  mm0 = 0 for all m;m0 2MP , and

(iii:) for each m 2 MSP , there exists some m0 2 MC (if non-empty) and m00 2 MP (if

non-empty) such that either (a)  m0m = 0 and  m00m = 1 or (b)  mm0 = 0 and  mm00 = 1.

LEMMA 5. Let C be an optimal communication network, and suppose 	 is induced by C. Then

	 has a generalized core-periphery structure.

Proof of Lemma 5. For the de�nition of what it means for 	 to be induced by C, see the proof

of Lemma 4. Arrange the nodes fi1; : : : ; iMg in 	 so that �1 � � � � � �M , and consider a trivial

partition of fi1; : : : ; iMg in which m (i`) 2MSP for all `. There are two cases two consider. In the

�rst case, suppose for all m,  iM im = 0. Consider an alternative partition in which m (i`) 2 M
SP

for all ` < M , and m (iM ) 2 MP . In the second case, suppose  iM im = 1 for some m < M . Then

take m = argmaxm<M xm. By construction,  iM im = 1 and therefore  imim = 1 for all m 6= m.

Consider an alternative partition in which m (i`) 2 MSP for all ` 6= m, and m 2 MC . In both

cases, therefore, 	 has a partition into a core, periphery, and suburban periphery, at least two of

which are non-empty, and therefore 	 has a generalized core-periphery structure. �

PROPOSITION 4. If production network P is weakly modular, optimal communication is all or

nothing.

Proof of Proposition 4. We will show that if P is weakly modular, then the per-node return to

informing another module about �i is always increasing in the number of modules whose agents

know �i. This result implies that it is either optimal for i to tell his state to all agents or none of

them.

To make this argument, consider agent 1, and order the remaining modules in decreasing order

of their cohesion: x2 � x3 � � � � � xM . The proof proceeds in four steps. First, we provide

conditions under which if it is pro�table to inform any module m 2 f2; : : : ;Mg, it is pro�table to
inform all modules m 2 f2; : : : ;Mg. Second, we provide conditions under which if it is pro�table
to inform only module 1, then it is also pro�table to inform module m = 2 and therefore by the

�rst step, all modules. Third, we provide conditions under which if it is pro�table to inform only

module m = 2, then it is also pro�table to inform module 1. Finally, we show that if P is weakly

modular, all these conditions are satis�ed, and therefore optimal communication is all or nothing.

Step 1: If pm � p � 2p(1+p)
(1+3p)(nm�1) for all m, then if it is pro�table to inform modules 2; : : : ; `� 1,

it is also pro�table to inform module `.

Suppose modules f1; : : : ; `� 1g are told about �1, and consider the per-node returns to in-
forming module `. If we de�ne S` =

P`
m=1 nmxm, then we can write expected revenues as
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a21�
2
1

�
1+(p1�p)x1

1+p1
+

px21
1�pS`

�
, so the per-node returns to informing module ` are

x`
a21�

2
1p
2x21

(1� pS`) (1� pS`�1)
� x`b`.

Next, note that x`b` < x`+1b`+1 if and only if

x` � x`+1 <
n`x` + n`+1x`+1
1� pS`+1

px`+1.

Since xm � 1
1+p for all m, the left-hand side of this inequality is less than x` �

1
1+p . And since

nm � 1 for all m, the right-hand side is greater than 2
1+p

p
1+p . We therefore have that a su¢ cient

condition for x`b` < x`+1b`+1 for all ` is that

x` �
1

1 + p
<

2

1 + p

p

1 + p
.

This inequality is satis�ed for all ` if

p` � p <
2p (1 + p)

(1 + 3p) (n` � 1)
.

Similarly, suppose modules f2; : : : ; `� 1g are told about �1, and consider the per-node returns
to informing module `. If we de�ne ~S` = 1

1+p +
P`
m=2 nmxm, then we can write expected revenues

as a21�
2
1

 
1+(p1�p) 1

1+p

1+p1
+

p
�

1
1+p

�2
1�p ~S`

!
, so the per-node returns to informing module ` are

x`
a21�

2
1p
2
�

1
1+p

�2�
1� p ~S`

��
1� p ~S`�1

� � x`~b`.

Following the same argument as above, a su¢ cient condition for x`~b` < x`+1~b`+1 for all ` is

p` � p <
2p (1 + p)

(1 + 3p) (n` � 1)

for all `.

Step 2: If p1 � p � p2 p(n1�1)
1�p(n1�1) , then if it is pro�table to inform module 1, it is also pro�table to

inform module 2.

The per-node returns to informing module 1, given no other modules are informed, are

a21�
2
1

p1
1 + p1

p1
1� (n1 � 1) p1

.

The per-node returns to informing module 2, given that module 1 is informed, are

x2
a21�

2
1p
2x21

(1� pn1x1 � pn2x2) (1� pn1x1)
= x2

a21�
2
1p
2x1

(1� pn1x1 � pn2x2) (1� (n1 � 1) p1)
,
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which are higher than the returns to informing only module 1 if

p21
1 + p1

� x2
p2x1

1� pn1x1 � pn2x2

The left-hand side is less than p21
1+p since p1 � p. And the right-hand side is greater than

p2

1+p
1

1�p(n1�1) because x2 �
1
1+p and pn2x2 � 0. A su¢ cient condition for this inequality is therefore

p21 � p2 � p2
p (n1 � 1)

1� p (n1 � 1)
,

and since p21 � p2 = (p1 + p) (p1 � p) � p1 � p, a su¢ cient condition for this inequality is that

p1 � p � p2
p (n1 � 1)

1� p (n1 � 1)
,

which establishes the claim.

Step 3: If p2 � p � p (1 + p), then if it is pro�table to inform module 2, it is also pro�table to

inform module 1.

The per-node returns to informing module 2, given that no other modules are informed, are

a21�
2
1

px2

1� p
�

1
1+p + n2x2

� p

1 + p
.

The per-node returns to informing module 1, given that module 2 is informed, are

x1
a21�

2
1

1 + p

0@ p1 � p
1 + p1

+ p
x1 +

1
1+p

1� p (n1x1 + n2x2)

!
(p1 � p) + x1

p 1
1+p

1� p (n1x1 + n2x2)
p

1� p
�

1
1+p + n2x2

� 1 + p1
1 + p

1A ,
which are increasing in p1 and are therefore greater than

a21�
2
1

1 + p

p
�

1
1+p

�
1� p

�
n1

1
1+p + n2x2

� 1

1� p
�

1
1+p + n2x2

� p

1 + p
,

which is the same expression but with p1 = p.

A su¢ cient condition for the claim is that

x2 �
�

1

1 + p

�2 1

1� p
�
n1

1
1+p + n2x2

�
The right-hand side is greater than 1

1+p
1
1+p

1
1�pn2 1

1+p

, so a su¢ cient condition for this claim is

x2 �
1

1 + p

1

1� p (n2 � 1)
,
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which is equivalent to

p2 � p � p (1 + p) .

Step 4: Suppose P is weakly modular. Then pm satis�es the conditions in step 1 for all m, p1

satis�es the condition in step 2, and p2 satis�es the condition in step 3. Optimal communication

is therefore all or nothing.

Since P is weakly modular, nm � 2 and pm � p < p3(1+p)
(nm�1)(1+p(1+nm)) for all m. We therefore

have that
p3 (1 + p)

(nm � 1) (1 + p (1 + nm))
� 2p (1 + p)

(1 + 3p) (nm � 1)
for all m,

p3 (1 + p)

(n1 � 1) (1 + p (1 + n1))
� p2

p (n1 � 1)
1� p (n1 � 1)

,

and
p3 (1 + p)

(n2 � 1) (1 + p (1 + n2))
� p (1 + p) ,

and so pm � p � min
n

2p(1+p)
(1+3p)(nm�1) ; p

2 p(n1�1)
1�p(n1�1) ; p (1 + p)

o
. We therefore have that if it is optimal

for agent 1 to tell his state to any other agent, it is optimal to tell his state to all agents. An

analogous argument establishes that the same is true for any arbitrary agent i, which establishes

the proposition. �

PROPOSITION 5. If production network P is weakly modular, and the modules di¤er in their

cohesions, there exists a � 2 (0; 1) such that for any P (�) with � 2 [�; 1): (i.) optimal communi-
cation is fully fragmented and (ii.) if it is optimal for agent i 2 N to tell his state to some module

m 2M, it is optimal for him to tell his state to the agents in his module m (i).

Proof of Proposition 5. Without loss we consider agent 1 in module 1, and we order the

remaining modules by cohesion with the most cohesive remaining module labelled 2.

Step 1: There exists some ~� < 1 such that for all � � ~�, if agent 1 tells his state to agents in

module 2, then he tells his state to agents in his own module 1.

The per-node bene�t of informing agents in module 1 if no one else is informed is

a21�
2
1

p21x1
(1� pn1x1) (1 + p1)

,

and the per-node bene�t of informing the next most cohesive module if module 1 is informed is

a21�
2
1

p2x21x2

(1� pn1x1)
�
1� p

P2
m=1 nmxm

� .
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The per-node bene�t of telling agents in module 1 if no one else is told minus the per-node bene�t

of telling agents in module 2 if module 1 is told is

a21�
2
1x1

1� pn1x1

 
p21

1 + p1
� p2x1x2

1� p
P2
m=1 nmxm

!
.

Denote the term in brackets by the function H (�). Then H (1) > 0, since the second term

in brackets is zero when p = 0, and the �rst term in brackets is strictly positive. Since H (�) is

continuous in �, there exists some ~� < 1 such that for all � � ~�, the per-node bene�t of informing
module 1 is higher than the per-node bene�t of informing module 2 given module 1 is informed.

Then, by supermodularity, the per-node bene�t of agent 1 telling agents in module 1 given agents

in module 2 are told is higher than the per-node bene�t of telling agents in module 2 alone, which

establishes the claim.

Moreover, if agent 1 tells his state to agents in any other module, he tells his state to agents in

module 2. And for � � ~�, if he tells his state to agents in module 2, he also tells his state to agents
in module 1. This argument establishes the second part of the proposition.

Step 2: There exists some �̂ < 1 such that for all � � �̂, if agent 1 tells his state to agents in

his own module and tells his state to agents in other modules in order of their cohesion, then the

per-node bene�t of agent 1 telling another module his state is always decreasing in the number of

modules whose agents know his state.

Recall from the proof of Proposition 4 that if we order the modules in decreasing order of their

cohesion, we can write the per-node returns to informing module ` as

x`
a21�

2
1p
2x21

(1� pS`) (1� pS`�1)
� x`b`.

Take a production network P, and denote by x` (�), b` (�), and S` (�) the objects de�ned above

that correspond to the weight-neutral increase in modularity of size � of P. We will show that

there is a �̂ < 1 such that if � � �̂, x` (�) b` (�) > x`+1 (�) b`+1 (�), that is, the per-node returns to

informing another module about a state �i is always decreasing in the number of modules whose

agents know �i. To this end, note that x`+1 (�) b`+1 (�)� x` (�) b` (�) is equal to

a21�
2
1p (�)

2 x1 (�)
2

(1� p (�)S`+1 (�)) (1� p (�)S` (�))

�
n`x` (�) + n`+1x`+1 (�)

1� p (�)S`�1 (�)
p (�)x` (�)� (x` (�)� x`+1 (�))

�
| {z }

�H`(�)

.

Moreover, H` (1) � 0 for all `. To see why, note that x` > x`+1 and d
d� (x` (�)� x`+1 (�)) =

pN
�
x` (�)

2 � x`+1 (�)2
�
> 0 implies x` (1) > x`+1 (1). We therefore have that H` (1) = x`+1 (1)�
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x` (1) < 0. Let � = sup�2(0;1);` fH` (�)g. Since H` (�) is continuous in �, we have that �̂ < 1, and
for all � > �̂, x` (�) b` (�) > x`+1 (�) b`+1 (�) for all `, which establishes the result.

Step 3: There exists some � < 1 such that for all � � �, optimal communication is fully frag-

mented.

Let � = max f~�; �̂g. By steps 1 and 2, for all � � �, if it is optimal for agent 1 to tell his state

to agents in some module, then it is optimal for him to tell his state to agents in his own module.

Let `1 denote the per-node bene�t of telling agents in module ` given those in modules 1; : : : ; `� 1
know his state. Then by step 2 (and since if agent 1 tells any module, he tells his own module)

for � � � and ` 2 f2; : : : ;M � 1g, if  2
h
`+11 ; `1

i
, it is optimal for agent 1 to inform agents in

modules 1; : : : ; `, and no agents in modules `+1; : : : ;M . And if  � M1 , it is optimal to tell agents

in all modules. Step 1 gives the value of the per-node bene�t of informing agents in module 1 only,

which gives the value of 11. �

PROPOSITION 6. There exists some  > 0 such that mirroring is optimal if and only if p � p,

where p is decreasing in the module characteristics nm and pm for all m 2M.

Proof of Proposition 6. The proof proceeds in three steps. For the �rst step, we �x a node i

and derive thresholds i and pi () such that it is optimal for i to tell his state to only his own

module if and only if  � i and p � pi (). For the second step, we show that mirroring is optimal

if and only if  �  � mini2N i and p � p () � mini2N pi (). The �rst part of the proposition

then follows from choosing  <  arbitrary and setting p = p (). The third step establishes the

comparative statics, which completes the proof.

Step 1: For each i, there exist i and pi () such that it is optimal for i to tell his state to only

his own module if and only if  � i and p � pi ().

Denote agent i�s revenues if he tells his state to all agents in modules m 2 Ki �M and to none

of the agents in modules m 62 Ki by Ri (Ci (Ki)). Agent i�s per-node returns to informing only
module m (i) are therefore

Ri (Ci (fm (i)g))�Ri (Ci (;))
nm(i) � 1

= a2i�
2
i

pm(i)

1 + pm(i)

pm(i)

1�
�
nm(i) � 1

�
pm(i)

.

De�ne this value to be i. Denote by K�i the set of modules agent i optimally tells his state to.
First, note that if  > i, then m (i) 2 K�i only if there is some m 6= m (i) such that m 2 K�i . To

see why, suppose p = 0. Then the per-node returns to informing any modules other than m (i) are

zero, and since  > i, the per-node returns to informing agent i�s own module are less than the

communication costs , so K�i = ;. By de�nition, agent i�s per-node returns to informing only his
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own module is independent of p, so an increase in p can expand K�i , but if it does so, it necessarily
adds modules m 6= m (i).

Next, for  and K �Mnfm (i)g arbitrary, de�ne pi (K; ) to be such that

Ri (Ci (K[fm (i)g))�Ri (Ci (fm (i)g))P
m2K nm

= .

This value pi (K; ) is the degree of coupling at which the per-node returns to informing all the
agents in modules m 2 K [ fm (i)g relative to informing only those in m (i) are exactly equal to
the costs of doing so. De�ne pi () � minK�M pi (K; ). Then K�i = fm (i)g if and only if  � i

and p � pi ().

Step 2: Mirroring is optimal if and only if  �  � mini2N i and p � p () � mini2N pi ().

De�ne  � mini2N i and p () � mini2N pi (). If  � , then m (i) 2 K�i for all i. If p � p (),

then for all i and m 6= m (i), m 62 K�i , so mirroring is optimal. This establishes the �if�part of the
claim.

To establish the �only if�part of the claim, suppose  > . Then for some i, by the argument

in step 1, if m (i) 2 K�i , there exists some m 6= m (i) such that m 2 K�i , so mirroring is not optimal.
And if  �  but p > p (), then there exists some i such that p > pi (). This implies that there

exists some m 6= m (i) such that m 2 K�i , so again, mirroring is not optimal.

Step 3: For each i, the threshold pi () is decreasing in nm and pm for all m. Therefore p () is

decreasing, in nm and pm for all m.

Take i and K �Mnfm (i)g arbitrary, and note that by Proposition 9, the expression

Ri (Ci (K[fm (i)g))�Ri (Ci (fm (i)g))P
m2K nm

� 

is increasing in nm and pm for all m, and it is increasing in p. This implies that pi (K; ), the value
of p at which this expression is zero, is decreasing in nm and pm for all m. Since i and K were

arbitrary, it follows that p () is decreasing in nm and pm for all m. �

COROLLARY 5. If an optimal communication network has a team structure, it has the following

properties: (i.) a team with two or more agents either includes all agents of a module or none of

them, (ii.) there is at most one team whose agents belong to two or more modules, and (iii.) a team

whose agents belong to two or more modules includes the agents from the most cohesive modules.

Proof of Corollary 5. Part (i:) follows from the �rst part of the proof of Proposition 2: if agent

i optimally tells his state to agent j, then he also tells his state to all other agents in module m (j).

And so if i and j are in a team, then so too must be all k with m (k) = m (j).
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For part (ii:), suppose there are at least two teams in the optimal communication network, each

of which contains agents who belong to at least two di¤erent modules. Without loss, suppose the

�rst team contains agents i and j withm (i) = 1 andm (j) = 2, and the second team contains agents

k and ` with m (k) = 3 and m (`) = 4. Then the communication network contains a two-switch,

and by Lemma 4, it is not optimal.

For part (iii:), suppose there is a team whose agents belong to two or more modules. Suppose

module m is part of this team. By Proposition 2, an agent i in module m tells his state to an agent

j outside his module if and only if xm(j) � �i. The symmetric argument holds for all individuals

within all modules in this team. Therefore this team contains the modules m with the highest

values of xm. �

For the next proposition, let C be a communication network, and say that 	 is induced by

C if 	 is a subgraph of C consisting of M nodes fi1; : : : ; iMg with m (i`) = ` and m;m0 entry

 mm0 = cimim0 if m 6= m0 and  mm = 0. Given 	, de�ne �
+ =

�
�+1 ; : : : ; �

+
M

�T
, �� =

�
��1 ; : : : ; �

�
M

�T
,

and � =
�
�1; : : : ; �M

�T
, where �+m =

P
j 6=m  mj is node m�s out-degree, �

�
m =

P
j 6=m  jm is node

m�s in-degree, and �m =
P
j<m 1��j �m�1

+
P
j>m 1��j �m

is node m�s conjugate out-degree. De�ne

�(	) =
PM
m=1max

�
�m � �+m; 0

	
to be the threshold gap of 	. We say that 	 is properly ordered

if m < m0 if and only if �+m > �+m0 or �+m = �+m0 and ��m � ��m0 . Given 	, we say s = ij ! k`

is a valid swap if  ij = 1 and  k` = 0, and we de�ne ~	 = 	 + s to be an M �M matrix with

(m;m0) = (i; j) entry equal to 0, (m;m0) = (k; `) entry equal to one, and all other (m;m0) entries

equal to  mm0 .

PROPOSITION 7. If C� is an optimal communication network, then the threshold gap �(	)

is zero for any network 	 induced by C�. If network 	 has �(	) > 0, then d�(	) =2e is the
minimum number of swaps required for the resulting communication network to have a threshold

gap of zero and thus exhibit the threshold property.

Proof of Proposition 7. For the �rst part of the proposition, recall from step 2 of Lemma 4 that

if C has the threshold property, so does any 	 induced by C. By Cloteaux et al. (2014), Theorem

1, if 	 is properly ordered, then the M Fulkerson-Chen inequalities hold with equality. Thus, for

all m, �+m = �m, and hence �(	) = 0. This part of the proposition then follows because if C� is

an optimal communication network, then by Corollary 3, it has the threshold property.

For the second part of the proposition, we will establish that if 	 is properly ordered, then

d�(	) =2e is a lower bound on the number of sequential valid swaps on 	 such that the resulting
~	, properly ordered, has �

�
~	
�
= 0. To do so, we will show that if 	 is properly ordered,

and �(	) > 0, then if ~	 = 	 + s for some valid swap s, and ~	0 is a proper reordering of ~	,
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�
�
~	0
�
� �(	) � 2. One challenge the proof has to overcome is that ~	 = 	 + s may not be

properly ordered. The proof proceeds in three steps.

Step 1: Suppose 	 is not properly ordered, and let 	0 be a proper reordering of 	. Then �(	0) �
�(	).

If	 is not properly ordered, then by the Bubble-Sorting Algorithm, there exists a �nite sequencen
~	k
oK
k=0

such that 	 = ~	0, 	0 = ~	K , and each ~	k is an adjacent reordering of ~	k�1, swapping

the `k and `k + 1 rows and columns of ~	k�1, where in ~	k�1, either �+`k < �+`k+1 or �
+
`k
= �+`k+1 and

��`k < ��`k+1. We will show that each adjacent reordering weakly reduces �. Speci�cally, suppose

node ` should out-rank node `+1. That is, either �+` < �+`+1 or �
+
` = �+`+1 and �

�
` < ��`+1. Construct

~	 from 	 by swapping the ` and `+ 1 rows and columns.

Let � = � � �+ =
PM
m=1 �m � �+, where

�m =

266666666666664

1��m�1
...

1��m�m�1

0

1��m�m
...

1��m�N�1

377777777777775
.

Then if we let x = 1��`+1�`
� 1��` �` + �

+
`+1 � �

+
` , we can write

~� = � � x � e` + x � e`+1,

where em is an M � 1 vector with mth entry 1 and other entries 0. Note that x � 0 because either
�+` < �+`+1 or �

+
` = �+`+1 and �

�
` < ��`+1.

Next, notice that

�` = �`+1 +
X
m<`

1��m=`�1 +
X
m>`

1��m=` + 1��`+1�`
� 1��` �` + �

+
`+1 � �

+
` = �`+1 + z + x,

where

z =
X
m<`

1��m=`�1 +
X
m>`

1��m=`.
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Let h (w) = max fw; 0g. We then have

�
�
~	
�

= �(	) + h
�
~�`

�
+ h

�
~�`+1

�
� h (�`)� h

�
�`+1

�
= �(	) + [h (�` � x)� h (�`)] +

�
h
�
�`+1 + x

�
� h

�
�`+1

��
= �(	) +

�
h
�
�`+1 + x

�
� h

�
�`+1

��
�
�
h
�
�`+1 + x+ z

�
� h

�
�`+1 + z

��
� �(	) ,

since h (�) is a convex function.
We therefore have

�(	) = �
�
~	0
�
� �

�
~	1
�
� � � � � �

�
~	K
�
= �

�
	0� ,

which establishes the claim.

Step 2: Suppose 	 is properly ordered, and s = ij ! k` is a valid swap. Let ~	 = 	 + s, not

necessarily properly ordered. Then �(	)� 2 � �
�
~	
�
� �(	) + 2.

Since s is a valid swap, we have ~�
+
= �+ + ek � ei and ~�

�
= �� + e` � ej . We can writee� = � +

�e�` � �`�+ �e�j � �j�, where

e�` � �` =

2666666666666664

1��` �0
...

1��` �`�2

0

1��` �`�1
...

1��` �N�2

3777777777777775
= em and

e�j � �j =

26666666666666664

1��j �1
...

1��j �j�1

0

1��j �j
...

1��j �N�1

37777777777777775
= em0

for some m;m0, since s is a valid swap. We therefore have that ~� = � + em + ei � em0 � ek, and so
if we let �

�
~	
�
=
PM
t=1max

n
~�t; 0

o
, we have �(	)� 2 � �

�
~	
�
� �(	) + 2.

Step 3. Suppose 	 is properly ordered, and s = ij ! k` is a valid swap. Let ~	 = 	 + s, not

necessarily properly ordered, and let ~	0 be a proper reordering of ~	. Then �
�
~	0
�
� �(	)� 2.

Given s, suppose ~	 = 	 + s is properly ordered. Then the result follows immediately from

Step 2, since ~	 = ~	0.

Suppose instead that ~	 = 	 + s is not properly ordered. Let 	̂ be a reordering of 	 such

that nodes are ordered as in ~	0. Then by Step 1, we have �(	) � �
�
	̂
�
. By Step 2, �

�
~	0
�
�

�
�
	̂
�
� 2. Putting these inequalities together, we have �

�
~	0
�
� �

�
	̂
�
� 2 � �(	)� 2, which

establishes the claim. �

61



Appendix B: Noisy Communication

This appendix derives the principal�s problem when communication is imperfect, but its precision

is a choice. Speci�cally, suppose each �j � N
�
0; �2j

�
, and each agent i receives a noisy and

conditionally independent signal of �j , denoted by sij = �j + �ij , where �ij � N (0; 1=� ij), and �ij

is independent of �k` for all (i; j) 6= (k; `). Let 'ij = � ij=
�
� ij + �

�2
j

�
be the signal-to-noise ratio

for i�s signal of �j , and denote by k
�
'ij
�
the cost of agent j ensuring that agent i�s signal of �j

has signal-to-noise ratio 'ij . Assume, as in the main model, that the total communication costs

are additively separable across i and j. Further, assume that p > 0. Then the principal�s problem

is to choose a matrix � with ijth element 'ij to solve

max
�
E [r (d1; : : : ; dN )j�]�

NX
i=1

NX
j=1

k
�
'ij
�
.

As in the main model, the timing of the game is as follows. First, the principal chooses �. Then

agents learn their states and send each other signals with signal-to-noise ratios as speci�ed in �.

Next, agents simultaneously make their decisions, and the game ends.

The following proposition establishes existence of equilibrium decision rules that are linear in

parties�signals, derives expressions for the coe¢ cients on these decision rules, and shows that the

principal�s problem can be decomposed into N subproblems, as in Proposition 1.

PROPOSITION B1. Given signals fsijgij, there are unique linear equilibrium decisions given by

d�i =
NX
j=1

aj!ij (�j) sij for all i 2 N ,

where !ij (�j) denotes the ijth entry of (I � (diag�j)P)�1.

Proof of Proposition B1. By Lambert, Martini, and Ostrovsky (2018), Theorem 2, given a com-

munication structure there is a unique linear-in-signals equilibrium. These equilibrium strategies

take the form

d�j (sj1; sj2; : : : ; sjN ) = �j +
NX
k=1

�jksjk

for each j 2 N , where �j and �jk are scalars.
We next establish the equilibrium values of �j and �jk for all j; k 2 N . The best response

functions for each agent are as in the main model

di = ai�i +

NX
j=1

pijE
�
dj j�(i)

�
.
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Using the linear equilibrium strategies above, agent i�s expectation of j�s equilibrium strategy can

be written

E
�
d�j
���(i)� = �j +

NX
k=1

�jkE
�
sjkj�(i)

�
= �j +

NX
k=1

�jkE
�
�k + �jk

���(i)� = �j +
NX
k=1

�jk'iksik.

Plugging equilibrium decisions into the best response function, we have

d�i = ai�i +

NX
j=1

pijE
�
d�j
���(i)� = aisii +

NX
j=1

pij

"
�j +

NX
k=1

�jk'iksik

#
.

We therefore have a system of equations

aisii +
NX
j=1

pij

"
�j +

NX
k=1

�jk'iksik

#
= �i +

NX
k=1

�iksik

for each i 2 N . So for each i 2 N , the following equilibrium conditions hold:

NX
j=1

pij�j = �i

�ik = 'ik

NX
j=1

pij�jk for all k 2 N , k 6= i, and

�ii = ai + 'ii

NX
j=1

pij�ji.

We can write the equilibrium conditions for a given k 2 N and each i 2 N as a system of N

equations

�k = ~ak + (diag�k)P�k,

where ~ak is a 1�N vector of zeros and value ak in the kth position, and �k is a 1�N vector with

ith entry �ik. Rearranging this system, we have

�k = [I � (diag�k)P]�1~ak,

where I � (diag�k)P is invertible since the spectral radius of P is strictly less than 1. Therefore

�ij is equal to the ijth entry of aj [I � (diag�k)P]�1. Finally, the values of �j satisfy P� = �,

where � is a vector with ith entry �i. Since P is full rank and has spectral radius strictly less than

1, we must have � = 0. �

PROPOSITION B2. An optimal communication pattern �� solves the principal�s problem if and

only if '�ij = '�m(i)j for all i; j, and �
�
j solves

max
�j

Rj (�j)�
MX
m=1

nmk
�
'mj

�
.
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Moreover, if within-module communication is free, then

Rj (�j) = a2j�
2
j

0@1 + �pm(j) � p�xm(j)
1 + pm(j)

+
px2m(j)

1� p
�PM

m=1 'mjnmxm
�
'mj

��
1A ,

where 'm(j)j = 1 and xm
�
'mj

�
=
�
1 + 'mj (p� (nm � 1) (pm � p))

��1.
Proof of Proposition B2. This proof proceeds in three steps. First, we establish the separability

result. Second, we establish that in any optimal communication pattern, '�ij = '�m(i)j for all i; j.

Third, we compute the expression for agent j�s expected revenues given �j .

Step 1. Show that an optimal communication pattern solves the principal�s problem if and only if

it solves i�s sub-problem for all i.

Using the same argument as in Lemma 1, we have

E [r (d1; : : : ; dN )j�] =
NX
i=1

Ri (�) =
NX
i=1

aiCov (d
�
i ; �i) .

Since �i and sij are independent, then

Cov (d�i ; �i) = ai!ii (�i)�
2
i ,

where by Proposition B1, !ii (�i) is the value of all directed walks from i to i on (diag�i)P. Since

Ri (�) depends only on �i, this establishes the �rst step.

Step 2. Show that '�ij = '�m(i)j for all j.

Consider informing agents about state �1. Let '�1 = ('
�
21; : : : ; '

�
N1) denote the optimal signal-

to-noise ratios for agent 1�s communication. Suppose that for agent i and agent j in the same

module, we have '�i1 > '�j1. Denote by !11 ('21; : : : ; 'N1) the value of all closed walks from agent

1 to itself on (diag�1)P for �1 arbitrary.. Then !11
�
'i1; '

�
�i1
�
� !11

�
0; '��i1

�
is the value of all

closed walks from agent 1 to itself when agent i�s signal si1 has signal-to-noise ratio 'i1 and agent

j 6= i�s signal sj1 has signal-to-noise ratio '�j1. This di¤erence is a measure of the additional value

generated by informing agent i with signal-to-noise ratio 'i1 versus not informing him at all. Since

'�i1 is optimal, it follows that !11
�
'i1; '

�
�i1
�
� !11

�
0; '��i1

�
� k ('i1) is maximized at '�i1.

Similarly, let !11
�
'j1; '

�
�j1

�
� !11

�
0; '��j1

�
be the value of all closed walks from agent 1 to

itself when agent j�s signal sj1 has signal-to-noise ratio 'j1 and agent i 6= j�s signal si1 has signal-

to-noise ratio '�i1. We will show that !11
�
'j1; '

�
�j1

�
�!11

�
0; '��j1

�
�k

�
'j1
�
is not maximized at

'�j1 < '�i1, and so '
�
j1 cannot be optimal because then we could increase total pro�ts by changing

'j1 and holding all other '�j1 �xed.
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Write !11
�
';'��j1

�
� !11

�
0; '��j1

�
� k (') as

�
!11

�
';'��i1

�
� !11

�
0; '��i1

�
� k (')

�
+
��
!11

�
';'��j1

�
� !11

�
0; '��j1

��
�
�
!11

�
';'��i1

�
� !11

�
0; '��i1

���
.

From above, the term !11
�
';'��i1

�
� !11

�
0; '��i1

�
� k (') is higher at ' = '�i1 that at the lower

value ' = '�j1. It remains to show that the remaining term is positive and increasing in '.

The term !11
�
';'��i1

�
� !11

�
0; '��i1

�
gives the value of all walks in the network (diag�1)P

with 'i1 = ' and '�i1 = '��i1 that pass through agent i. We can partition this set of walks into

walks that pass through i but not j and walks that pass through i and j. Similarly, the term

!11

�
';'��j1

�
� !11

�
0; '��j1

�
gives the value of all walks in the network (diag�1)P with 'j1 = '

and '�j1 = '��j1 that pass through agent j. We can partition this set of walks into walks that pass

through j but not i and walks that pass through i and j. The only di¤erence between the networks

is that in the �rst one, we have 'i1 = ' and 'j1 = '�j1 and in the second network, we have 'j1 = '

and 'i1 = '�i1. Since i and j are in the same module and so otherwise symmetric, the value of all

walks that pass through i but not j in the �rst network is the same as the value of all walks that

pass through j but not i in the second network.

Now consider the walks that pass through both i and j. Write the value of such a walk as

p1j1pj1j2 � � � pj`�11'j11 � � �'j`�11.

Each pair of links in this walk that go to and then from node i contributes to the value of this walk

in two ways: as part of a pkipi` term and a 'i1 term. Similarly, each link in this walk that goes into

j contributes to a phjpjm term and a 'j1 term. For each such walk we can �nd an equivalent walk

where any pair of links to and from i are replaced by a pair of links to and from j, and any pair of

links to and from j are replaced by a pair of links to and from i. Because of the symmetry of the

production network and because i and j are in the same module, then pkipi` = pkjpj` and so there

is no di¤erence in the value of the walk coming from the production network. The di¤erence in the

value of the walks comes from the 'i1 and 'j1 terms. In the network (diag�1)P with 'i1 = ' and

'�i1 = '��i1 consider a walk that passes out of node i m times and passes out of node j n times and

so its value is multiplied by 'm
�
'�j1

�n
. We can �nd an equivalent walk in network (diag�1)P with

'j1 = ' and '�j1 = '��j1, where we replace j with i, and so it passes out of node j m times and

out of node i n times, and so its value is multiplied by 'm ('�i1)
n. Since 'm ('�i1)

n > 'm
�
'�j1

�n
,

and the di¤erence in value between these walks is increasing in ', this establishes the claim.
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Step 3. Assume within-module communication is free. Show that

Rj (�j) = a2j�
2
j

0@1 + �pm(j) � p�xm(j)
1 + pm(j)

+
px2m(j)

1� p
�PM

m=1 'mjnmxm
�
'mj

��
1A ,

where 'm(j)j = 1 and xm
�
'mj

�
=
�
1 + 'mj (p� (nm � 1) (pm � p))

��1.
This argument parallels the argument in the proof of Lemma 3. Without loss of generality, we

compute R1 (�1). By the same argument as in step 1 of the proof of Lemma 3, if we let v0 represent

the sum of the value of all walks from node 1 back to itself on the reweighted network (diag�j)P,

and vk be the sum of the value of all walks from a node in module k to node 1 on (diag�j)P, then2666664
1

0
...

0

3777775 = Q
2666664

v0

v1
...

vM

3777775 ,
where

Q =

2666666664

1 �p1 (n1 � 1) �pn2 � � � �pnM
�p1 1� p1 (n1 � 2) �pn2 � � � �pnM
�'21p �'21p (n1 � 1) 1� '21p2 (n2 � 1) � � � �'21pnM
...

...
...

. . .
...

�'M1p �'M1p (n1 � 1) �'M1pn2 � � � 1� 'M1pM (nM � 1)

3777777775
.

If we let ~Q be the matrix obtained by removing the �rst row and column of Q, then v0 =

det ~Q=detQ. Carrying out the same calculations as in the proof of Lemma 3, we

detQ =
(1 + p1) (1� p1 (n1 � 1))
x2 ('21) � � �xM ('M1)

 
1� �

MX
m=2

'm1nmxm ('m1)

!
,

where � = p
�
1 + pn1

1�p1(n1�1)

�
and xm

�
'mj

�
=
�
1 + 'mj (p� (nm � 1) (pm � p))

�
. Similarly,

det ~Q =
1� p1 (n1 � 2)

x2 ('21) � � �xM ('M1)

 
1� ~�

MX
m=2

'm1nmxm ('m1)

!
,

where ~� = p
�
1 + p(n1�1)

1�p1(n1�2)

�
. Putting these results together, we have

R1 (�1) = a21�
2
1v0 = a21�

2
1

det ~Q

detQ

= a21�
2
1

0@1 + (p1 � p)x1
1 + p1

+
px21

1� p
�
n1x1 +

PM
m=2 'm1nmxm ('m1)

�
1A ,
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which establishes the result. �

PROPOSITION B3. Suppose within-module communication is free. Then if k
�
'ij
�
is linear in

'ij, then optimal communication patterns satisfy '�mj 2 f0; 1g with '�mj � '�m0j if and only if

xm � xm0 . If k is convex, and optimal communication patterns have '�mj 2 (0; 1) for all m and j,

then '�mj � '�m0j if and only if xm � xm0 .

Proof of Proposition B3. By Proposition B2, agent j�s sub-problem is

max
f'mjgm6=m(j)

a2j�
2
j

0@1 + �pm(j) � p�xm(j)
1 + pm(j)

+
px2m(j)

1� p
�PM

m=1 'mjnmxm
�
'mj

��
1A� X

m6=m(j)
nmk

�
'mj

�
,

where 'm(j)j = 1. The marginal bene�t of increasing '`j for m 6= m (j) is therefore

a2j�
2
j

px2m(j)p�
1� p

�PM
m=1 'mjnmxm

�
'mj

���2 �'`jx0` �'`j�+ x` �'`j��

= a2j�
2
j

p2x2m(j)x`
�
'`j
�2�

1� p
�PM

m=1 'mjnmxm
�
'mj

���2 .
This marginal bene�t is increasing in '`j , and so if k

�
'`j
�
is linear in '`j , then any optimal solution

will be a corner solution with

a2j�
2
j

p2x2m(j)x
2
`�

1� p
�PM

m=1 'mjnmxm

�
'�mj

���2 � k (1) � a2j�
2
j

p2x2m(j)x
2
m�

1� p
�PM

m=1 'mjnmxm

�
'�mj

���2
for all ` with '�`j = 1 and m with '�mj = 0.

If k
�
'`j
�
is convex, and optimal communication patterns are interior, then they satisfy the

�rst-order conditions

k0
�
'�`j
�
= a2j�

2
j

p2x2m(j)x`

�
'�`j

�2
�
1� p

�PM
m=1 'mjnmxm

�
'�mj

���2
and so

k0
�
'�`j

�
k0
�
'�mj

� =
0@ x`

�
'�`j

�
xm

�
'�mj

�
1A2 .

Since x` � xm if and only if x` (') � xm (') for all ', we have that '�`j � '�mj if and only if

x` � xm. �
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Appendix C: Heterogeneous Coupling

Each node i belongs to a module m (i) 2 M, and each module m belongs to a cluster k (m) 2 K,
where K = f1; : : : ;Kg. As in the main model, the need for coordination between two decisions
depends on whether they are in the same module. In contrast to the main model, the need for

coordination between two decisions in di¤erent modules depends on whether they are in the same

cluster. That is, pij = pm if m (i) = m (j), pij = pk if m (i) 6= m (j) but k (m (i)) = k (m (j)),

and pij = p otherwise. Note that throughout this extension, we will use subscripts to denote

module-level characteristics and superscripts to denote cluster-level characteristics.

The proof of this proposition proceeds by establishing two results, which parallel Lemma 3

and Proposition 2. First, Lemma C1 derives a closed-form expression for the expected revenues

that result when node 1 informs an arbitrary set of modules in an arbitrary set of clusters. Then,

Proposition 8 uses the convexity of the resulting function in each of its arguments to show that it

implies a cluster-level threshold property for optimal communication networks.

LEMMA C1. Suppose agent 1 tells his state to all agents in an arbitrary set of modules M� that

includes module m (1). Agent 1�s expected revenue is then given by

R1 (C1) = a21�
2
1

0@1 + �p1 � p1�x1
1 + p1

+

�
p1 � p

�
x21

1� (p1 � p)S1 +
�

1

1� (p1 � p)S1

�2 px21

1� p
PK
k=1

Sk

1�(pk�p)Sk

1A ,
where

Sk =
X

m2M�:k(m)=k

nmxm and xm =
1

1 + pk(m) � (nm � 1)
�
pm � pk(m)

� .
If m (1) 62 M�, then replace n1 with 1 in these expressions.

Proof of Lemma C1. Suppose agent 1 is in module m = 1 in cluster k = 1, and suppose M�

contains k1 modules in cluster k = 1, k2 � k1 modules in cluster k = 2, and kK � kK�1 modules in
cluster k = K. Number these modules so that modules m = 1 to m = k1 are in cluster 1, modules

m = k1 + 1 to m = k2 are in cluster 2, and modules m = kK�1 + 1 to m = kK are in cluster K.

By the same argument as in step 1 of the proof of Lemma 3, if we let v0 represent the sum of the

value of all walks from node 1 back to itself on the subgraph of the production network consisting

of nodes in modules whose agents know state �1 and v` the sum of the values of all walks from a
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node in module ` to node 1 on this same subgraph, then2666664
1

0
...

0

3777775 = Q
2666664

v0

v1
...

vnkK

3777775 ,
where

If we let eQ be the matrix obtained by removing the �rst row and column of Q, then v0 =

det eQ=detQ. This proof calculates this value by carrying out several decompositions of Q and eQ.
First, we will show step-by-step how detQ is calculated. The same steps are then used to calculate

det eQ and therefore v0.

Step 1: Factor out terms involving links within module 1.

First, write Q in block-matrix form

"
A B

C D

#
, where A =

"
1 �p1 (n1 � 1)
�p1 1� p1 (n1 � 2)

#
captures

the terms describing links within module 1. The submatrices B, C, and D are de�ned accordingly.

Then by the block-matrix determinant formula, detQ = det (A) det
�
D�CA�1B

�
.

Step 2: Factor out terms involving the remaining modules in cluster 1, that is, modules 2 to k1.

We can write D �CA�1B in block matrix form as

"
M N

O P

#
, where M captures the terms

describing links within cluster 1, and each of these submatrices is de�ned as follows.
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where �A = p1
�
1 + p1n1

1�p1(n1�1)

�
, �B = p

�
1 + p1n1

1�p1(n1�1)

�
, � = p

�
1 + pn1

1�p1(n1�1)

�
, and �k =�

pk � p
�
+ �.

Again, by the block-matrix determinant formula, det
�
D�CA�1B

�
= det

�
M�NP�1O

�
det (P).

Step 3: Write the terms involving clusters 2 to K as the sum of a diagonal matrix and a low-rank

matrix.

Next, note that we can write P = X�1 +UVT , where

X =

2664
xk1+1 � � � 0
...

. . .
...

0 � � � xkK

3775 , U =

2666666666666664

��2 � � � ��
...

. . .
...

��2 � � � ��
...

. . .
...

�� � � � ��K
...

. . .
...

�� � � � ��K

3777777777777775
, V =

2666666666666664

nk1+1 � � � 0
...

. . .
...

nk2 � � � 0
...

. . .
...

0 � � � nkK�1+1
...

. . .
...

0 � � � nkK

3777777777777775
.

Using the Weinstein-Aronszajn identity, detP = det
�
X�1

�
det
�
I+VTXU

�
. The second term

in this identity can, in turn, be written as the sum of a diagonal matrix and a rank-one matrix:

I+VTXU = E+ uvT , where

E =

2664
1�

�
�2 � �

�
S2 � � � 0

...
. . .

...

0 � � � 1�
�
�K � �

�
SK

3775 , u =
2664
S2

...

SK

3775 , v =
2664
��
...

��

3775 ,
where recall that Sk =

P
m2M�;k=k(m) nmxm. By the matrix determinant lemma, det

�
I+VTXU

�
=�

1 + vTE�1u
�
detE.

Step 4: Rewrite the terms linking cluster 1 to clusters 2 to K in terms of calculable matrices.

Recall from step 2 that calculating det
�
D�CA�1B

�
requires calculating det

�
M�NP�1O

�
and det (P). Step 3 carried out the latter. This step shows how to calculate det

�
M�NP�1O

�
.

Since P = X�1 + UVT is the sum of a diagonal matrix and a low-rank matrix, the Woodbury

matrix identity allows us to write its inverse as follows

P�1 = X�XU
�
I+VTXU

��1
VTX.

Moreover, since I+VTXU = E+uvT is the sum of a diagonal matrix and a rank-one matrix, the

Sherman-Morrison identity allows us to write its inverse as�
I+VTXU

��1
= E�1 � E

�1uvTE�1

1 + vTE�1u
.
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Step 5: Substitute in the expressions from steps 1 to 4 to give an expression for detQ.

Putting together each of the preceding steps,we have the following:

detQ = det (A) det
�
D�CA�1B

�
= det (A) det

�
M�NP�1O

�
detP

= det (A) det
�
M�NP�1O

�
det
�
X�1

�
det
�
I+VTXU

�
= det (A) det

�
M�NP�1O

�
det
�
X�1

� �
1 + vTE�1u

�
detE

= det (A) det

�
M�N

�
X�XU

�
E�1 � E

�1uvTE�1

1 + vTE�1u

�
VTX

�
O

�
�

det
�
X�1

� �
1 + vTE�1u

�
detE.

Step 6: Carry out the preceding steps for the matrix eQ to obtain an expression for det eQ.
Recall that eQ is the matrix obtained by removing the �rst row and column of Q. Carrying

out steps 1 to 5 on this matrix, denote the corresponding matrices with tildes. For the analog of

step 1, let eA = 1 � p1 (n1 � 2) and de�ne eB, eC, and eD correspondingly. For the analog of step

2, write eD � eCeA�1 eB in block matrix form as

" fM eNeO eP
#
, where each of the submatrices fM, eN,

eO, and eP are the same as M, N, O, and P, except that each of the �A, �B, �, and �` terms

are replaced with ~�
A
= p1

�
1 + p1(n1�1)

1�p1(n1�2)

�
, ~�

B
= p

�
1 + p1(n1�1)

1�p1(n1�2)

�
, ~� = p

�
1 + p(n1�1)

1�p1(n1�2)

�
, and

~�
k
=
�
pk � p

�
+ ~�, respectively. For the analog of step 3, write eP = X�1 + eUVT , where eU is the

same as U but with � and �` replaced by ~� and ~�
`
. Additionally, I+VTXeU = E+ uevT , where ev

is the same as v but with � replaced by ~�.

Putting together each of these steps, we have

det eQ = det
�eA� det fM� eN X�XeU E�1 � E�1uevTE�1

1 + evTE�1u
!
VTX

! eO! �
det
�
X�1

� �
1 + evTE�1u� detE

and therefore

!11 (C1) = v0 =
det eQ
detQ

=
det
�eA�

det (A)

det
�fM� eN�X�XeU�E�1 � E�1uevTE�1

1+evTE�1u
�
VTX

� eO�
det
�
M�N

�
X�XU

�
E�1 � E�1uvTE�1

1+vTE�1u

�
VTX

�
O
� 1 + evTE�1u
1 + vTE�1u

.

Making the appropriate substitutions, we have

!11 (C1) =
1 +

�
p1 � p1

�
x1

1 + p1
+

�
p1 � p

�
x21

1� (p1 � p)S1 +
�

1

1� (p1 � p)S1

�2 px21

1� p
PK
k=1

Sk

1�(pk�p)Sk
,
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which completes the proof of the part of the proposition with m (1) 2M�.

Now suppose m (1) 62 M� (i.e., agent 1 does not tell his state to others in his own module).

Then we can de�ne Q and ~Q as above, plugging in n1 = 1. And we can de�ne the matrices R and

~R, where R is the matrix obtained by removing the second row and column of Q, and ~R is the

matrix obtained by removing the �rst and second rows and columns of Q. In this case,

v0 =
det ~R

detR
=
(1 + p1) det ~R

(1 + p1) detR
=
det ~Q

detQ
,

with n1 = 1 substituted into the de�nition of Q. The last equality holds by the Laplace expansion

of the determinant. This completes the proof. �

PROPOSITION 8. There exist thresholds �ki � 0 such that it is optimal for agent i 2 N to tell his

state to agent j 2 N with m (j) 6= m (i) and m (j) in cluster k 2 K if and only if xm(j) � �ki .

Proof of Proposition 8. First, suppose agent i tells his state to all the agents in his own module.

Let ~S1 = S1 � n1x1 and de�ne the function h
�
~S1; S2; S3; : : : ; SK

�
to be�

p1 � p
�
x21

1� (p1 � p)
�
n1x1 + ~S1

�+ 1�
1� (p1 � p)

�
n1x1 + ~S1

��2 px21

1� p
�

(n1x1+~S1)
1�(p1�p)(n1x1+~S1)

+
PK
k=2

Sk

1�(pk�p)Sk

� .
We will establish that this function is convex in each of its arguments and use this fact to argue

that optimal communication networks have the multi-threshold property described in the lemma.

First, we show that h is convex in ~S1. Let W =
PK
k=2

Sk

1�(pk�p)Sk
. Then h is convex in ~S1 if

and only if

~h
�
~S1
�
=

�
p1 � p

�
x21

1� (p1 � p)
�
n1x1 + ~S1

�+ 1�
1� (p1 � p)

�
n1x1 + ~S1

��2 px21

1� p
�

(n1x1+~S1)
1�(p1�p)(n1x1+~S1)

+W

�
is convex in ~S1. This function is convex because it is twice di¤erentiable and

~h00
�
~S1
�
= 2x21

0@ p1

1� (p1 � p)S1 +
p

1� (p1 � p)S1
p1 S1

1�(p1�p)S1 + pW

1� p1 S1

1�(p1�p)S1 � pW

1A3 > 0,
since 1�

�
p1 � p

�
S1 > 0 and 1� p1 S1

1�(p1�p)S1 � pW > 0.

Next, we show that h is convex in S` for ` > 1. LetW =
(n1x1+~S1)

1�(p1�p)(n1x1+~S1)
+
P
k 6=1;k 6=`

Sk

1�(pk�p)Sk
.

Then h is convex in S` if and only

~h
�
S`
�
=

1

1� p
�
W + S`

1�(p`�p)S`

�
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is convex in S`. This function is convex because it is twice di¤erentiable and

~h00
�
S`
�
= 2

~h
�
S`
�3

(1� (p` � p)S`)3
p
�
p` (1� pW ) + (p)2W

�
> 0,

since 1� pW > 0 and 1�
�
p` � p

�
S` > 0.

Now suppose agent 1 does not tell his state to the other agents in his own module. We can

de�ne ~S1 = S1 � 1
1+p1

and ĥ
�
~S1; S2; S3; : : : ; SK

�
to be the same as above, except with n1 = 1.

Then the function ĥ has the same properties as h derived above.

To establish the multi-threshold property, let K be an arbitrary set of modules with m (i) 2 K.
De�ne S` (K) =

P
m:m2K;k(m)=` nmxm, and denote by Ci (K) the row of the communication matrix

in which agent i tells �i to agent j if and only if m (j) 2 K. By Lemma C1, Ri (Ci (K)) is a linear
function of h

�
~S1 (K) ; S2 (K) ; : : : ; SK (K)

�
.

Now suppose that it is optimal to inform all modules in K. Then it must be the case that for
all m 2 K and k (m) = `,

 �
h
�
~S1 (K) ; S2 (K) ; : : : ; SK (K)

�
� h

�
~S1 (K) ; S2 (K) ; : : : ; S` (Knfmg) ; : : : ; SK (K)

�
nm

< xmh`

�
~S1 (K) ; S2 (K) ; : : : ; SK (K)

�
,

where the second inequality holds because h is convex in S` (K) and where h` denotes the partial
derivative of h with respect to S`. Suppose further that it is not optimal to also inform some

module m0 62 K with k (m0) = `. Then it must be the case that

 >
h
�
~S1 (K) ; S2 (K) ; : : : ; S` (K [ fm0g) ; : : : ; SK (K)

�
� h

�
~S1 (K) ; S2 (K) ; : : : ; SK (K)

�
nm0

> xm0h`

�
~S1 (K) ; S2 (K) ; : : : ; SK (K)

�
.

These two inequalities imply that xm > xm0 for all modules m in cluster ` that are are optimally

told about �i and modules m0 in cluster ` that are optimally not told about �i. In other words,

there is a threshold �`i such that agent i tells �i to agent j in module m (j) 6= m (i) and cluster

k (m (j)) = ` if and only if xm(j) � �`i . �

We conclude this appendix by establishing that the principal�s problem is supermodular for

arbitrary production networks satisfying pii = 0, pij = pji, and
PN
j=1 pij < 1.

PROPOSITION 9. As long as the production network P satis�es pii = 0, pij = pji, and
PN
j=1 pij <

1, optimal communication networks C� are increasing in the value of autonomous adaptation a2i�
2
i

and the needs for coordination pij for all i; j 2 N , and decreasing in communication costs .
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Proof of Proposition 9. For general production networks P satisfying pii = 0, pij = pji, andPN
j=1 pij < 1, Lemmas 1 and 2 and Proposition 1 continue to hold. As long as !ii (Ci) is supermod-

ular in Ci, then the principal�s objective for the subproblem involving who should agent i inform

about �i is supermodular in Ci and exhibits increasing di¤erences in
�
a2i�

2
i ; fpijgij ; fcijgij ;�

�
,

so the comparative statics results follow from Topkis�s theorem. It remains, therefore, to show that

!ii (Ci) is supermodular in Ci.

To show that !ii (�) is supermodular, let J � N denote a subset of agents, and denote by c (J )
the 1�N vector with jth element equal to one if j 2 J and equal to zero otherwise. We will show

that the incremental value of informing agent 1 about �i is higher when agent 2 knows �i than

when she does not. Take J to be a set of nodes that are informed throughout the exercise.

Denote by P (J ) = (diag c (J ))P (diag c (J )) the subset of the production network consisting
of the nodes j for which the jth element of c (J ) is equal to one. Then

�k � P (J [ f1; 2g)k � P (J [ f2g)k �
�
P (J [ f1g)k � P (J )k

�
is the matrix whose ijth element is the value of the additional walks of length k from informing

agent 1 when agents J [ f2g are informed relative to when only agents J are informed. Since

informing agent 1 adds more walks of all lengths to P (J [ f2g) than it does to P (J ), it follows
that every element of �k is nonnegative. Since this argument holds for all k, we have that the iith

element of

1X
k=1

�k =

1X
k=1

P (J [ f1; 2g)k �
1X
k=1

P (J [ f2g)k �
 1X
k=1

P (J [ f1g)k �
1X
k=1

P (J )k
!

is nonnegative. Recall that !ii (c (J )) is the iith element of (I � P (J ))�1 = I +
P1
k=1P (J )

k.

We therefore have that

!ii (c (J [ f1; 2g))� !ii (c (J [ f2g)) � !ii (c (J [ f1g))� !ii (c (J )) ,

so !ii (�) has increasing di¤erences in ci1 and ci2. The choice of agents 1 and 2 was immaterial in
this argument, and so !ii (�) has increasing di¤erences in cij and cik for all j; k 6= i and is therefore

supermodular. �

Appendix D: Incentive Con�icts

Suppose the principal cares about revenues r (d1; : : : ; dN ), and each agent i cares instead about

ui (d1; : : : ; dN ) = r (d1; : : : ; dN ) + 2aidibi,
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where bi re�ects agent i�s decision-making bias.

PROPOSITION D1. Given a vector b = [b1; : : : ; bN ] of decision-making biases, an optimal com-

munication network solves

max
C

NX
i=1

aiCov (d
�
i ; �i)�

h
a1b1 � � � aNbN

i
(I�P)�1

2664
a1b1
...

aNbN

3775 ,
where

Cov (d�i ; �i) = ai�
2
i!ii (Ci) .

Proof of Proposition D1. Agent i�s best response function is

d�i = ai (�i + bi) +

NX
j=1

pijEi
�
d�j
�
.

Given communication network C, the argument in the proof of Lemma 1 establishes that there are

unique Bayes-Nash equilibrium decisions. These decisions satisfy, for all j,

d�i =
NX
j=1

aj!ij (Cj) �j +

NX
j=1

ajwijbj ,

where !ij (Cj) denotes the ijth entry of (I� (diagCj)P (diagCj))�1 and wij denotes the ijth
entry of (I�P)�1.

Given equilibrium decision-making, revenue in state � can be written as

NX
i=1

aid
�
i �i �

NX
i=1

d�i

24d�i � ai�i � NX
j=1

pijd
�
j

35 .
Substituting in the best responses d�i = ai (�i + bi) +

PN
j=1 pijEi

h
d�j

i
, the term in square brackets

is therefore equal to
PN
j=1 pij

h
aibi + Ei

h
d�j

i
� d�j

i
, and expected revenue can be written as

NX
i=1

aiE [d
�
i �i]�

NX
i=1

aibid
�
i �

NX
i=1

NX
j=1

pijE
�
d�i
�
Ei
�
d�j
�
� d�j

��
=

NX
i=1

aiCov (d
�
i ; �i)�

NX
i=1

aibiE [d
�
i ] ,

where the last term is zero by the law of iterated expectations, and E [d�i �i] = Cov (d
�
i ; �i) because

E [�i] = 0.
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Finally, note that

E [d�i ] = E

24ai (�i + bi) + NX
j=1

pijEi
�
d�j
�35

= aibi +

NX
j=1

pijE
�
d�j
�
,

so that we can write 2664
E [d�1]
...

E [d�N ]

3775 = (I�P)�1
2664

a1b1
...

aNbN

3775 ,
and

NX
i=1

aibiE [d
�
i ] =

h
a1b1 � � � aNbN

i
(I�P)�1

2664
a1b1
...

aNbN

3775 ,
which establishes the result. �
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