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Abstract

This paper aims to improve the practical applicability of the classic theory of incen-

tive contracts under moral hazard. We establish conditions under which the information

provided by an A/B test of incentive contracts is sufficient for answering the question

of how best to improve a status quo incentive contract, given a priori knowledge of the

agent’s monetary preferences. We assess the empirical relevance of this result using data

from DellaVigna and Pope’s (2018) study of a variety of incentive contracts. Finally,

we discuss how our framework can be extended to incorporate additional considerations

beyond those in the classic theory.
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1 Introduction

Firms and organizations throughout the economy now understand that there is a lot to learn

from experimentation—they regularly use it to inform product design, pricing, advertising,

and many other facets of their product-market strategies. Equally critical to the survival of

any organization, however, is the management of compensation and reward structures: How

should people be rewarded for outcomes? This can be a challenging question to answer—even

in theory—and it has largely evaded recent trends in data-driven decision-making. This paper

shows that under some mild and reasonable assumptions about the way people respond to

incentives and value monetary rewards, simple experimentation coupled with a few basic

theoretical insights can lead us a long way towards answering it.

To introduce our main ideas and to illustrate two problems that the approach we develop

has to overcome, let us consider an example. Suppose you are a manager at a company

that sells kitchen knife sets. You hire teenagers each summer to sell them door to door,

and you pay them a simple piece rate for doing so. You have access to sales data for your

workforce, and you are interested in knowing whether, and how, you should change the piece

rate. Suppose your gross profit margin for selling a knife set is m, the piece rate is α, and

your worker’s average sales are a. Your expected profits are therefore Π = (m− α) a. If you

were to marginally increase your piece rate, the effect on your profits would be

dΠ

dα
= (m− α)

da

dα
− a, (1)

where the first term represents the effect on your net revenues, and the second term represents

the effect on your wage bill.

You know your gross profit margin, the current piece rate, and the current average sales.

You do not, however, know your workers’ behavioral response, da/dα, to an increase in the

piece rate. Given observational data alone, figuring out this behavioral response requires

knowing a lot about the problem your workers face: What are their effort costs? If they work

a little harder, what is going to happen to the distribution of their sales? These are questions

you likely do not know the answer to, but importantly, they are questions you do not need

to know the answer to if you are willing to run an experiment.

Suppose you decide to run an A/B test on your workforce. You randomly divide it into a

treatment and a control group, you increase the piece rate by a small amount in the treatment

group, and you have access to the data on the distribution of output for both the status quo

contract and the test contract. You can use this data to estimate da/dα, and you can use

the above expression to determine whether you should marginally increase or decrease your
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piece rate.

This example illustrates two lessons. The first is that observational data is not informa-

tive enough to provide guidance for decision making in this context, just as a snapshot of

price–quantity data is not informative enough for telling a manager how to change prices.

The second lesson is that instead of having to know the details of the worker’s unobservable

characteristics, it suffices to estimate a simple behavioral response, a lesson that echoes that

of the growing literature on sufficient statistics for welfare analysis (see, for example, Chetty

(2009)).

The example also sidesteps two important issues that we will have to address. First, it

restricts attention to linear contracts. This is a severe restriction, as the existing contract

may not be linear, and improving upon the existing contract may well entail putting in

place a nonlinear contract with features such as bonuses or accelerators with increasing piece

rates. Second, it asks a local question—how best to marginally improve upon the status

quo contract—and for practical applications, we are interested in non-local adjustments. We

address each of these issues in turn.

To do so, we consider the canonical principal–agent framework under moral hazard, as in

Holmström (1979). Facing a contract w, which is a mapping from output to payments re-

ceived, an agent chooses an unobservable and privately costly effort level a, which determines

the distribution over output f ( ·| a), which we normalize so that the mean output is a. As in

Holmström (1979), we assume that the agent’s first-order condition characterizes his effort

choice, and we assume that his preferences over money and his effort costs are additively

separable and given by v (w)− c (a).

Given any status quo contract w, let us consider the effects of an arbitrary nonlinear

adjustment dw to the contract. This adjustment directly affects the expected wage bill by

E [dw] and leads the agent to change his effort level by some amount, da. The total effect on

the principal’s profits is therefore

dΠ =

(
m−

∫
wfa

)
da− E [dw] ,

which is the appropriate generalization of (1) to nonlinear contracts.1 The main challenge

to figuring out the best marginal adjustment to the status quo contract is that the agent’s

response da depends on dw, and there is a continuum of ways in which the contract can

be adjusted. Our main lemma shows that, given knowledge of the agent’s preferences for

money, the information provided by a single A/B test of incentive contracts, which allows

1We write fa to denote the derivative of f(x|a) with respect to a, and we suppress the dependence on
output x and effort a to simplify the notation.
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the principal to estimate da for a particular dw, is a sufficient statistic for the estimation of

the agent’s behavioral response to any marginal adjustment to the contract.

The argument for this sufficient-statistic result reveals how to use the data generated by

an A/B test, and so it is worth detailing informally here. Given a contract, an agent will exert

effort up to the point where his marginal effort costs equal his marginal incentives, which

are given by I = Cov (v (w) , fa/f). That is, he will work harder if doing so increases the

likelihood of well-compensated outputs and decreases the likelihood of poorly compensated

outputs. The agent’s behavioral response to a change in his marginal incentives, da/dI, is

therefore independent of the adjustment to the contract that led to the change in marginal

incentives. Predicting how the agent will respond to an adjustment to the contract therefore

requires information about how he will respond to a change in his marginal incentives, da/dI,

and how the adjustment affects his marginal incentives, dI.

To make use of the information from an A/B test, consider a test contract that increases

the agent’s mean output. Comparing the output distributions under the status quo contract

and the test contract allows us to estimate which output levels become more and less likely,

identifying fa. Given an estimate of fa and knowledge of the agent’s preferences for money, we

can infer how the test contract changed the agent’s marginal incentives, dI, which allows us to

identify the agent’s behavioral response to a change in marginal incentives, da/dI. The A/B

test also provides the information required to estimate how any other marginal adjustment

to the status quo contract affects the agent’s marginal incentives, d̃I, and therefore the

agent’s effort choice d̃a = (da/dI) d̃I. A single A/B test, therefore, provides all the relevant

information for predicting how the principal’s expected profits will change in response to any

marginal adjustment to the status quo contract and serves as a sufficient statistic for the

question of how best to marginally adjust the status quo contract. This sufficient-statistic

result is our main conceptual contribution. We then show that the problem of how best to

locally adjust a status quo contract is equivalent to figuring out the direction of steepest

ascent in the principal’s objective, which can be determined by solving a convex program.

The second important issue that the above example sidestepped was the question of how

to predict the effects of non-local adjustments to the status quo contract. We show that if

the agent’s effort costs are isoelastic, and fa is independent of the agent’s effort choice, then

the information provided by a single A/B test provides all the information needed to predict

how the principal’s profits will respond to any adjustment to the status quo contract. In

doing so, we provide a procedure for using this information to optimally adjust the status

quo contract.

We then explore the quantitative implications of our results using data from DellaVi-

gna and Pope’s (2018) large-scale experimental study of how a variety of different incentive
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schemes motivate subjects in a real-effort task. We use the data from several treatments in

which subjects were motivated solely by financial incentives. In all of these treatments, sub-

jects received a fixed wage plus a contingent payment that depended on their performance in

the experiment. In four of these treatments, they received a constant piece rate for every unit

of performance, and the piece rate varied across the different treatments. In the remaining

two treatments, subjects received a bonus if their performance exceeded a target, and the

bonus varied between these treatments. We use these data to carry out two exercises.

Our first exercise asks the question of whether subjects’ average performance varies in the

way our model predicts with our measure of the subjects’ marginal incentives. We take the

data from two treatments within the same class, that is, data from two piece-rate treatments

or two bonus treatments. We suppose that in one of the treatments, the subjects were on the

status quo contract, and in the other, they were on the test contract. For each such pair, we

predict the mean performance in each of the remaining four treatments and compare it to the

actual average performance. A/B tests using piece-rate contracts predict the performance in

the other piece-rate-contract treatments well: the mean absolute percentage error for such

predictions is 0.66%. A/B tests using piece-rate contracts also predict the performance in

bonus contracts well, and vice versa: The mean absolute percentage error for such predictions

is 2.28%. As a comparison, the mean absolute percentage performance differences across

treatments is 6.40%. Moreover, our predictions for a given treatment are similar no matter

which A/B test we use to make our predictions. Taken together, the correlation between our

predictions and actual performance is 0.94.

Our second empirical exercise assesses the performance of the contract generated by our

procedure. We use data from seven treatments to fit the parameters of the production envi-

ronment using nonlinear least squares estimation. Given those parameters and an assumption

about the principal’s marginal revenue per-unit of performance, we compute, as a benchmark,

the optimal contract and the principal’s corresponding expected profit. Then, we take data

from each pair of treatments, and we use our procedure to construct the optimally adjusted

contract. We define the realized gains of an adjustment to be the difference in profits between

the adjusted and the status quo contract, and we define the maximum gains available to be

the difference in profits between the optimal and the status quo contract. Averaging across

all A/B tests, the realized gains are equal to approximately 68% of the maximum gains.

Put differently, our results suggest that with a single A/B test, the principal can attain just

over two-thirds of the profit gains that she could attain if she knew the entire production

environment and put the optimal contract in place. We also demonstrate that this finding is

robust to the principal’s assumption about the agent’s preferences for money.

Although our main results apply only to the canonical principal–agent framework of
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Holmström (1979), we show how our main insights extend to several enrichments of the

framework. For example, we show how they extend to settings where the firm employs

heterogeneous agents and to settings where the agent’s effort is multidimensional.

Finally, we carry out both our empirical exercises in another experimental setting studied

in DellaVigna and Pope (2019), where subjects perform a data-entry task under several

different incentive schemes. First, we use each pair of incentive treatments to predict mean

performance in each of the remaining treatments. Averaging across all pairs, the mean

absolute percentage error for such predictions is 5.14%, while the mean absolute percentage

performance difference across treatments is 31.93%. In our second empirical exercise, we again

construct a benchmark model and measure what fraction of the maximum gains available are

realized by the test-optimal contract. Averaging across all A/B tests, the realized gains are

approximately 75% of the maximum gains.

This paper contributes to both the theoretical and empirical literatures on principal–agent

problems under moral hazard. Over the past four decades, theoretical work has extended

the canonical principal–agent framework (Mirrlees, 1976; Holmström, 1979) to incorporate a

host of additional real-world considerations: team production (Holmström, 1982), dynamic

incentives (Holmström and Milgrom, 1987), limited liability (Innes, 1990), multitask problems

(Holmström and Milgrom, 1991), behavioral agents (Benabou and Tirole, 2002; 2003; 2006),

private information (Carroll, 2015; Gottlieb and Moreira, 2017; Chade and Swinkels, 2019;

Foarta and Sugaya, 2020), and commitment problems (Laffont and Tirole, 1988; MacLeod

and Malcomson, 1988). These papers characterize optimal contracts in their enriched settings

and deliver deep insights into fundamental trade-offs. Their use as prescriptive theories has

been limited, however, as the optimal contracts they prescribe in a given environment often

depend in complicated and subtle ways on unobservable characteristics of that environment.

In order to take a step towards a prescriptive contract theory, we depart from much of the

theoretical literature in two ways. First, we drop the strong assumption that the principal

knows the production environment—the agent’s effort-cost function and the joint distribution

of effort and output. Second, instead of asking, “what is the best incentive contract?”, we ask

a narrower question, but one that is relevant in any ongoing organization: “What is the best

way to improve upon an existing contract?” Our focus is on developing an understanding

of what the principal needs to know—and equally importantly, what she might plausibly be

able to know—to answer this question.2 Carroll (2015) and Gottlieb and Moreira (2017) also

assume the principal does not know the production environment. In contrast to these two

2Ortner and Chassang (2018) addresses a similar question in the context of designing policies to fight
corruption: Using a variational approach similar to ours, they show how a designer can use naturally occurring
data to evaluate local policy changes.
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papers, our focus is on how the principal can learn the relevant aspects of the environment,

rather than their complementary approaches of describing optimal contracts when she cannot

learn this information.

Empirical work on incentive contracts has focused largely on testing key predictions of

the theory. Several papers use quasi-experimental or experimental variation and show that

higher-powered incentives cause workers to work harder, at least on the dimensions that

are highly rewarded. These effects have been found in a variety of settings, ranging from

windshield repairers (Lazear, 2000), tree planters (Shearer, 2004), and bicycle messengers

(Fehr and Goette, 2007) in high-income countries, to day laborers (Guiteras and Jack, 2018),

factory workers (Hong et al., 2018), and journalists (Balbuzanov et al., 2017) in low-income

countries. Our results show that one could potentially use the data in each of these settings

to improve upon the contracts being offered in that setting, subject to the caveat that any

important discrepancies between the applied setting and the canonical moral-hazard setting

we analyze would need to be accounted for in the analysis.3

This paper is related to the literature on sufficient statistics, which exploits envelope

conditions from agents’ optimization problems to characterize optimal policies in terms of

simple elasticities and a small set of other model parameters; see Chetty (2009) for an overview

and a unified framework, and Kleven (2020) for a generalization. In a seminal contribution,

Harberger (1964) proposes a simple elasticity-based formula to measure the deadweight loss of

a commodity tax. This approach has been used to study trade-offs in the design of monopoly

pricing schemes, (Wilson, 1993), unemployment insurance (Baily, 1978 and Chetty, 2006),

income-tax schedules (Feldstein, 1999 and Saez, 2001), welfare programs (Finkelstein and

Notowidigdo, 2019), and stimulus programs (Michaillat and Saez, 2019).4 Our paper extends

the sufficient-statistics approach to analyze settings of pure moral hazard, where an agent’s

incentives depend on the entire contract he faces, and a change in his action affects the entire

output distribution.

Finally, there are three papers that merit particular attention because they ask questions

that are related to ours. Ke (2008) develops an approach for testing whether a contract is

optimal using observational data on pay and performance under that contract. Our approach

shows how experimental data can be used not only to test whether a given contract is optimal

but how to improve upon it when it is not optimal. Prendergast (2014) shows how to bound

the elasticity of workers’ performance with respect to the output sensitivity of their pay by

3For example, if learning-by-doing is an important source of productivity gains, the framework should be
enriched to include an experience-dependent term to the agent’s cost function.

4This approach can also be adapted to settings where envelope conditions are not applicable because, for
example, agents are imperfect optimizers. See DellaVigna (2009) for a survey of evidence where individuals’
behavior deviates systematically from the predictions of neoclassical optimization models, and Chetty, Looney,
and Kroft (2009) for an application of the “sufficient statistics” approach to commodity taxation.
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using information on their elasticity of taxable income. This information can inform whether a

worker’s pay should optimally be more sensitive to their performance, but it does not provide

guidance for how best to adjust a worker’s contract to achieve that goal. d’Haultfoeuille and

Février (2020) uses variation in contracts to estimate the losses associated with using linear

contracts when workers are risk neutral. We show how such variation can be used to improve

upon any suboptimal contract in more general pure-moral-hazard settings.

2 Model

We consider a standard contractual relationship between a principal and an agent as in

Holmström (1979) but with a non-standard informational assumption and principal objective.

The agent faces a contract, w (·), which is an upper-semicontinuous mapping from output

to payments made from the principal to the agent. The agent chooses a privately costly, non-

contractible effort level a ≥ 0 that determines the distribution over his output, which accrues

to the principal. In particular, his output, x ∈ R, is realized according to some probability

density function (hereafter pdf) f (x| a), which we assume is twice continuously differentiable

in a. Without loss of generality, we normalize a so that a = E [x| a], and the agent’s effort

can be interpreted as his expected output.

If the agent is paid ω and chooses effort level a, he obtains utility v (ω) − c (a), where

v : R → R and c : R+ → R+ are twice continuously differentiable and satisfy v′′ < 0 < v′

and c′, c′′ > 0. If the agent generates output x and is paid w (x), the principal’s profit is

mx− w (x). We assume that v and m are common knowledge.

We refer to the pair of functions P ≡ (f, c) as the production environment. The agent

observes P and chooses his effort level to maximize his expected utility. We assume that the

first-order approach is valid so that the agent’s optimal effort choice is fully characterized by

the first-order condition of his problem. We denote by a (w) the agent’s optimal effort choice

under contract w, and we assume that a (w) is unique for all w.

The principal does not observe P but does observe outcome data from two contracts:

a status quo contract, which we will denote wA, and a test contract, which we will

denote wB. The outcome data for a contract w is the distribution of output generated

by an agent facing that contract, that is, f ( ·| a (w)). We will say that a contract w̃ Pareto

improves w if the expected utility of the principal and the agent are at least as high under

w̃ as under w given the production environment P .

The principal’s objective is to choose a profit-maximizing contract that Pareto improves

the status quo contract. The set of contracts we allow the principal to choose from will

depend on the exercise we carry out. In Section 3, it will be the set of local adjustments to
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the status quo contract, and in Section 4, it will be the full set of contracts.

Discussion. Our model aims to capture a setting where a firm employs a group of agents

and has outcome data for the group of agents under two incentive contracts. This “many-

agents” interpretation is fully consistent with our model as long as the agents are identical. In

Section 6.1 we establish conditions under which our results extend to settings with unobserved

agent heterogeneity.

The assumption that the principal has outcome data from only two incentive contracts

reflects the fact that experimenting with different incentive contracts can be very costly for

firms. As we will show, outcome data from two incentive contracts provides all the information

necessary to solve for the optimal local adjustment to the status quo contract in the classic

moral-hazard setting. We also show that outcome data from additional test contracts may be

useful if the agent’s action is multi-dimensional (see Section 6.2) or for relaxing extrapolation

conditions when solving for optimal non-local adjustments (see Appendix A.2 and A.3).

Throughout the paper, we take this outcome data as given and assume it has not been ma-

nipulated by agents either strategically to influence the principal’s learning or non-strategically,

for example, if the unequal assignment to the test contract violates agents’ fairness norms. In

Section 7, we briefly discuss these and other issues that can arise when experimenting with

agents’ compensation and how they may be partially addressed through the appropriate

design of high-level test-contract features that are outside the model.

Our focus on Pareto-improving contracts implicitly assumes that the agent’s participation

constraint binds under the status quo contract. An alternative rationale for this assumption

is that when firms revise their performance-pay plans, workers are often suspicious about the

firm’s intentions, which can lead to opposition to the change or sabotage to its implementa-

tion; see, for example, Lazear (2000). Restricting attention to contracts that make workers

at least as well off as the status quo contract may prevent these problems.

Finally, while our assumption that the principal knows the agent’s utility function is

restrictive, it is standard in both the contracting under moral hazard literature and the

taxation literature; see, for example, Holmström (2017), the review of Chung et al. (2020),

and Saez (2001). In each of our empirical exercises, we will assess the sensitivity of our

results to the specific utility function we assume. We interpret this assumption as being

consistent with the idea that managers can use information about the agent’s decisions in

other domains to learn about their risk preferences (see, for example, Einav et al. (2012)

for evidence that individuals’ risk preferences have a domain-general component). Moreover,

the principal can also learn about the agent’s utility function if she has outcome data from

additional contracts.
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3 Optimal Local Adjustments

We first ask the question of how the principal should locally adjust a status quo contract.

We will show that the information revealed by a single A/B test of contracts is sufficient

for solving this problem. In Section 4, we will show how to extrapolate the local conditions

we identify here to answer the more practical question of how best to adjust the contract

non-locally.

To carry out this exercise, we will need to be able to describe how the principal’s payoff

changes as we locally adjust the status quo contract wA, and this requires an important piece

of terminology and notation. Given a contract w and a function q (w), define the Gateaux

differential of q in the direction t by Dq (w, t) ≡ limθ→0 [q (w + θt)− q (w)] /θ.

We will first show how the agent’s effort and utility change as we locally adjust the

contract. The agent’s problem, given contract w, is

u (w) = max
a

∫
v (w (x)) f (x| a) dx− c (a) .

We have assumed that the first-order approach is valid, so we can characterize the agent’s

optimal effort choice a (w) under contract w by his first-order condition. To this end, define

the agent’s marginal incentives as I (w, a) ≡
∫
v (w (x)) fa (x| a) dx, where fa (x|a) is the

derivative of f(x|a) with respect to a. Optimal effort equates marginal costs to marginal

incentives and is therefore implicitly defined by the equation c′ (a (w)) = I (w, a (w)).

The following lemma shows how the agent’s utility and effort change in response to a

local adjustment to w in the direction t.

Lemma 1. Locally adjusting a contract w in the direction t changes the agent’s utility by

Du (w, t) =

∫
t (x) v′ (w (x)) f (x| a (w)) dx

and his effort by

Da (w, t) =
DI (w, t)

c′′ (a (w))−
∫
v (w (x)) faa (x| a (w)) dx

, (2)

where DI (w, t) ≡
∫
t (x) v′ (w (x)) fa (x| a (w)) dx.

The first part of the lemma shows that how the agent’s utility changes does not depend

directly on his cost function. This result follows from the envelope theorem. The second

part shows that the agent’s behavioral response depends on how the adjustment affects his

marginal incentives, DI (w, t), as well as on the local curvature of his problem. It also implies
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that Da (w, t) /DI (w, t) is independent of t: How the agent responds to an adjustment to

the contract depends only on how that adjustment impacts his marginal incentives. This

property will be important in what follows.

We will now describe the principal’s problem under the assumption that she knows the

production environment.5 Her expected profit under contract w is

π (w) = ma (w)−
∫
w (x) f (x| a (w)) dx.

As she adjusts the contract in the direction t, her profits change according to the profit

differential

Dπ (w, t) =

[
m−

∫
w (x) fa (x| a (w)) dx

]
Da (w, t)−

∫
t (x) f (x| a (w)) dx.

The first term describes the change in the principal’s gross profits per unit of expected output

times the change in the expected output, and the second term captures the change in the

expected payments she will make to the agent, holding expected output fixed.

We can now state the principal’s problem of how best to locally Pareto improve a status

quo contract wA. Given production environment P , she wants to choose the direction t that

maximizes her profit differential subject to the constraint that it weakly improves the agent’s

utility. That is, she solves

max
t:||t||≤1

Dπ
(
wA, t

)
subject to Du

(
wA, t

)
≥ 0, (Adjlocal)

where ||·|| is the `2 norm. Adjustments have both direction and magnitude. We constrain

the magnitude of the adjustment to isolate the choice of the optimal direction.

In describing this problem, we temporarily assumed the principal knows the production

environment. We now show she only needs to know certain local aspects of the production

environment to solve (Adjlocal). To do so, we will compare her problem across different pro-

duction environments, and so it will be helpful to introduce the notation (Adjlocal−P ) to

refer to the principal’s problem (Adjlocal) when the production environment is P . Denote

the agent’s effort choice, the output density function, and its derivative with respect to effort

under the status quo contract by aA = a
(
wA
)
, fA = f

(
·| aA

)
, and fAa = fa

(
·| aA

)
, respec-

tively, and, in an abuse of notation, denote the agent’s effort differential under production

environment P by Da (w, t|P ). The following lemma shows which aspects of the production

5We assume that the principal is an expected profit maximizer, but it is straightforward to extend the
results to any objective function that depends on the distribution of output.
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environment are relevant for solving (Adjlocal).

Lemma 2. Take any two production environments P = (f, c) and P̃ = (f̃ , c̃) satisfying

fA = f̃A, fAa = f̃Aa , and Da
(
wA, t

∣∣P) = Da
(
wA, t

∣∣ P̃) for all t. Then t∗ solves (Adjlocal−P )

if and only if it solves (Adjlocal−P̃ ).

Lemma 2 shows that for the problem of locally Pareto improving a status quo contract,

three pieces of local information are required: the output distribution under the status quo

contract, how the output distribution changes locally in effort, and how the agent responds

to every local change to the contract.

Before we show how a local A/B test provides this information, we need to introduce a

couple definitions and pieces of notation. Take the production environment as given. An

A/B test for contracts wA and wB is a pair AB
(
wA, wB

)
≡
(
fA, fB

)
, where fA is the pdf

for wA and fB is the pdf for wB. A local A/B test for contracts wA and wB is a triple

LAB
(
wA, wB

)
≡
(
fA, fAa ,Da

(
wA, wB

))
consisting of outcome data for wA, information

about how the output distribution changes locally in effort, and the agent’s effort response

to a change in the direction wB. We will say that the test contract is informative if

Da
(
wA, wB

)
6= 0. One way of interpreting a local A/B test is that it consists of the local

properties of the output distribution that the principal can construct with outcome data for

wA and outcome data for wA + θwB as θ → 0.

The following proposition shows that the information provided by a local A/B test suffices

for solving (Adjlocal).

Proposition 1. Take any two production environments P = (f, c) and P̃ = (f̃ , c̃), a status

quo contract wA, and an informative test contract wB. The following are equivalent:

(i) fA = f̃A, fAa = f̃Aa and Da(wA, t|P ) = Da(wA, t|P̃ ) for all t.

(ii) LAB
(
wA, wB|P

)
= LAB(wA, wB|P̃ ).

The proof of Proposition 1 shows how the information from a local A/B test can be used

to construct the necessary information for solving (Adjlocal). In particular, knowledge of fAa

enables the principal to compute how the agent’s marginal incentives change in response to

adjusting the status quo contract in any direction, that is, DI(wA, t) for any t. Then, using

the insight from Lemma 1 that the agent’s behavioral response to a change in his marginal

incentives is independent of the adjustment that led to that change, we have for any t,

Da
(
wA, t

)
=
Da
(
wA, wB

)
DI (wA, wB)

DI
(
wA, t

)
.

Knowledge of Da
(
wA, wB

)
, therefore, allows the principal to evaluate the agent’s effort differ-

ential as the status quo contract is adjusted in any direction t and ultimately solve (Adjlocal).
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We now return to the principal’s problem, (Adjlocal). This is a convex-optimization prob-

lem and can be solved using standard methods. Define the following function, which we call

the Holmström–Mirrlees adjustment function:

T (x, λ, µ) =
[
λv′
(
wA (x)

)
− 1
]
f
(
x| aA

)
+ µv′

(
wA (x)

)
fa
(
x| aA

)
.

Proposition 2 characterizes the optimal local adjustment.

Proposition 2. Let wA be the status quo contract. There exist λ∗, µ∗ ≥ 0 such that

t∗ (x) ∝ T (x, λ∗, µ∗) solves (Adjlocal). If wA is locally optimal, then T (x, λ∗, µ∗) = 0 for all

x.

The first part of this proposition shows that the optimal local adjustment is in the direc-

tion of a Holmström–Mirrlees-type contract, that is, it locally balances risk allocation and

incentive provision: It shifts payments from outputs where the agent has a low marginal util-

ity of money to those where his marginal utility of money is higher. And it shifts payments

towards outputs that change the agent’s marginal incentives in the profit-maximizing direc-

tion. The optimal way to balance these two considerations is determined by the coefficients

λ∗, µ∗, the exact expressions for which are given in the proof of Proposition 2 in the appendix.

The second part of this proposition echoes the optimality conditions of Holmström (1979)

and serves as a consistency check. When the status quo contract is already optimal, the

coefficients λ∗ and µ∗ coincide with those in Holmström (1979). The primary contribution

of Proposition 2 is to show how λ∗ and µ∗ change as we consider status quo contracts that

are not locally optimal. In particular, µ∗, the weight that is optimally put on how marginal

incentives are adjusted, is higher when the principal’s expected gains from a higher effort

level are higher and when the agent’s response to an increase in marginal incentives is higher.

The weight that is put on the risk-allocation component, λ∗, is smaller when µ∗ is higher.

4 Non-local Adjustments

The analysis in the previous section illustrates how local information suffices for characterizing

optimal local adjustments. This section provides a method for extrapolating to assess non-

local adjustments. It shows in particular how to use non-local information from an A/B test

to inform this question, which is important in practice.

Figuring out how to optimally locally adjust wA requires knowledge of fa
(
x| aA

)
and

Da
(
wA, t

)
, which as we showed can be acquired with a local A/B test. To figure out how

to best non-locally adjust wA requires knowing f (x| a) for all a and a (w) for all w. This

13



section provides a pair of conditions under which this information can be extrapolated from

a single A/B test. Throughout, we focus on a specific set of extrapolation conditions, which

are the ones we use in our empirical exercises in Section 5. At the end of this section, we

discuss more general conditions that suffice for extrapolation from a single A/B test.

Condition 1. The output distribution f (x|a) is affine in a, that is, f (x|a) = g (x) + ah (x)

for some g (x) and h (x) satisfying
∫
g (x) dx = 1 and

∫
h (x) dx = 0.

This condition is common in the moral-hazard literature because it guarantees the first-

order approach is valid. It also implies several further properties that are useful for our

exercise. First, it ensures that knowledge of the pdf, f ( ·| a), at two effort levels, say aA

and aB, is sufficient to estimate the pdf corresponding to any other effort level. Second,

it implies that this information also suffices to compute fa (x| a) ≡ h (x) and the agent’s

marginal incentives, I (w, a) =
∫
v (w (x))h (x) dx, which are independent of a. When this

condition holds, we will drop dependence of I on a in our notation. Additionally, it ensures

that f (x| a) does not have a moving support, which could lead to optimal contracts that

depend critically on this property. One limitation of imposing this extrapolation condition

is that the output distribution can be computed only for efforts such that g (x) + ah (x) ≥ 0

for all x.

We will now revisit the agent’s problem, under the assumption that Condition 1 is satis-

fied. Given a contract w, he solves

u (w) =

∫
v (w (x)) g (x) dx+ max

a
{aI (w)− c (a)} .

The agent’s optimal effort level, given marginal incentives I, which we denote by ã (I), satisfies

the implicit equation c′(ã (I)) = I. The following lemma parallels Lemma 1 and characterizes

the agent’s utility and effort when contract w is replaced with contract w̃.

Lemma 3. Suppose Condition 1 is satisfied, and the contract w is replaced with w̃. Then

the agent’s utility satisfies

u (w̃) = u(w) +

∫
[v (w̃ (x))− v (w (x))] g (x) dx+

∫ I(w̃)

I(w)

ã (i) di

and his effort satisfies

a (w̃) = a(w) +

∫ I(w̃)

I(w)

dã (i)

di
di,

where dã (I) /dI = 1/c′′ (ã (I)).
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Lemma 3 characterizes the relevant aspects of the agent’s problem and shows that, under

Condition 1, the principal needs two pieces of information. She needs information on how

the agent values the contractual adjustment, as well as how his effort changes in response to

the contractual adjustment. The main observation of Lemma 3 is that this latter object does

not depend directly on the adjustment being considered but instead depends only on how

that adjustment affects the agent’s marginal incentives. The first part of the lemma follows

from the integral form of the envelope theorem, and the second part of the lemma follows

directly from the fundamental theorem of calculus.

The next condition ensures that an A/B test provides all the information required to

assess how the agent will respond to adjusting the contract.

Condition 2. The agent has isoelastic effort costs: c′ (a) = e−β/εa1/ε for some parameters

β, ε ≥ 0.

Condition 2 implies that for any contract w, the agent’s effort choice satisfies

ln a (w) = β + ε ln I (w) . (3)

An A/B test provides the information required to determine β and ε. It provides information

on IA = I
(
wA
)

and IB = I
(
wB
)
, and the agent’s elasticity of effort with respect to marginal

incentives is constant and so equals the arc elasticity implied by the A/B test:

ε =
ln aA − ln aB

ln IA − ln IB
.

The coefficient β can be constructed using this information as well: β = ln aA − ε ln IA.

This condition ensures, therefore, that the agent’s effort choice can be extrapolated given

information on a single behavioral elasticity, which is consistent with the standard approach

taken in the sufficient statistics literature for optimal taxation; see, for example, Brewer, Saez

and Shephard (2010).6

Let us now define the principal’s profit when she offers contract w̃:

π(w̃) = ma(w̃)−
∫
w̃(x) [g(x) + a(w̃)h(x)] dx.

6We implicitly assume that both the status quo and test contracts generate strictly positive marginal
incentives, precluding, for instance a constant-wage contract. Moreover, Condition 2 implies that c′(0) = 0
and therefore such a contract would motivate zero effort, which is at odds with evidence from many settings,
including the one we will study in the next section. To accommodate positive effort choices under constant-
wage contracts, we can add a parameter to the agent’s cost function that captures incentives that are external
to the model, such as those arising from intrinsic motivation or long-term career incentives. These external
incentives can be identified with outcome data from an additional test contract. See Section A.2 for details.
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The principal’s problem given the status quo contract wA is therefore

max
w̃

π(w̃) subject to u (w̃) ≥ u(wA). (Adj)

In practice, the program (Adj) is solved using the Grossman and Hart (1983) two-step

approach. In the first step, we fix a target effort level a and solve for the cost-minimizing

contract that satisfies a(w̃) = a and u (w̃) ≥ u(wA). In the second step, we choose the

optimal target effort level. The first-stage problem can be transformed into a convex program

by transforming the principal’s choice from the function w̃ to the function V = v (w̃). In

general, the second-stage problem need not be a convex program. In practice, it is a one-

dimensional problem that can be quickly solved numerically.

Under Conditions 1 and 2, the principal can learn all the relevant parameters of the

production environment with an A/B test, allowing her to solve (Adj). We now formally state

this result, which is the sufficient-statistic analogue of Proposition 1 for non-local adjustments.

Similar to Section 3, we will write (Adj−P ) to refer to the principal’s problem (Adj) when

the production environment is P .

Proposition 3. Suppose Conditions 1 and 2 hold. Take any two production environments

P = (f, c) and P̃ = (f̃ , c̃), a status quo contract wA, and a test contract wB for which

a(wA) 6= a(wB). The following are equivalent:

(i) g = g̃, h = h̃, ε = ε̃, and β = β̃.

(ii) AB
(
wA, wB

∣∣P) = AB
(
wA, wB

∣∣ P̃).

Moreover, if these statements hold, then w∗ solves (Adj−P ) if and only if it solves (Adj−P̃ ).

This proposition shows that when Conditions 1 and 2 hold, an A/B test provides the

necessary information to solve the principal’s problem (Adj). We also note that this sufficient-

statistic result continues to hold if the problem (Adj) is augmented with additional constraints

that depend only on the contract w̃, such as limited-liability or monotonicity constraints. We

use this observation in our second empirical exercise.

We conclude with a brief discussion of the extrapolation conditions. As Proposition 3

shows, these conditions are sufficient to ensure that the information from a single A/B test

allows the principal to calculate an optimal contract. Analogous results hold under the

following more general extrapolation conditions that make use of data from two contracts.

Condition 1’. There exists a function k (x|a, θ1 (x) , θ2 (x)) such that there is a unique pair of

functions θ1 (x) and θ2 (x) satisfying k
(
x|aA, θ1 (x) , θ2 (x)

)
= fA (x) and k

(
x|aB, θ1 (x) , θ2 (x)

)
=

fB (x) for any pair of contracts wA and wB.
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Condition 2’. The agent’s marginal cost function c′ (a; θ1, θ2) is such that there is a unique

pair of parameters θ1 and θ2 satisfying c′
(
aA; θ1, θ2

)
= I

(
wA, aA

)
and c′

(
aB; θ1, θ2

)
=

I
(
wB, aB

)
for any pair of contracts wA and wB.

Condition 1 is a special case of Condition 1’ with θ1 (x) = g (x), θ2 (x) = h (x), and

k (x|a, θ1 (x) , θ2 (x)) = θ1 (x)+aθ2 (x), and it amounts to a linear extrapolation of the pair of

distributions in an A/B test. Condition 2 is a special case of Condition 2’ with c′ (a; θ1, θ2) =

e−θ2/θ1a1/θ1 , and as we discussed above, it amounts to an isoelastic extrapolation of the pair

of effort levels and marginal incentives in an A/B test.

5 An Empirical Exploration

We will now assess the quantitative implications of our model. To do so, we use data from

DellaVigna and Pope’s 2018 real-effort experiment conducted on Amazon’s Mechanical Turk.

In the experiment, subjects were tasked with repeatedly pressing the ‘a’ and ‘b’ keys in

alternating order. They received one point for every a/b keystroke pair they managed to

complete in a ten-minute period, and they were paid according to how many points they

accumulated during that time. Each subject was randomly assigned to a single treatment

and performed this task once.

In the treatments we focus on, subjects in different treatments were paid according to dif-

ferent incentive contracts. During the course of the treatment, subjects could see the incentive

contract they were on, a count-down clock, a running tally of the number of keystroke pairs

they had completed, as well as their accumulated earnings. We observe, for each subject, the

treatment they were assigned and the number of points they accumulated.

Table 1 summarizes seven treatments. In each treatment, subjects received a $1 partici-

pation fee regardless of how many points they accumulated. In the first treatment, subjects

were told only that “Your score will not affect your payment.” This corresponds to a contract

w1 (x) = 100, where we denominate the payments in cents. We will refer to treatment 1

as the no-incentives treatment. In treatment 2, they were paid a constant amount for every

thousand points, and in treatments 3 to 5, they were paid a constant amount for every hun-

dred points. In treatment 3, for example, they were told, “You will be paid an extra 1 cent

for every 100 points.” This corresponds to a contract w3 (x) = 100 + 0.01x, where x is the

number of points achieved. We will refer to treatments 2 to 5 as the piece-rate treatments.

For consistency with our model, we treat x as a continuous variable. Therefore, the implied

incentive contracts for these treatments are an approximation. In treatments 6 and 7, sub-

jects received a payment if they achieved 2, 000 or more points. In treatment 6, for example,

subjects were told, “You will be paid an extra 40 cents if you score at least 2,000 points.”
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This corresponds to the contract w6 (x) = 100 + 40I{x≥2000}, where I{x≥2000} is the indicator

function for x ≥ 2000. We will refer to treatments 6 and 7 as the bonus treatments.

Table 1: Experimental Treatments from DellaVigna and Pope (2017)

Contract Avg. #points Std. Dev. #Subjects
No-incentives w1 (x) = 100 1521 31.23 540
Piece-rate w2 (x) = 100 + 0.001x 1883 28.61 538

w3 (x) = 100 + 0.01x 2029 27.47 558
w4 (x) = 100 + 0.04x 2132 26.42 566
w5 (x) = 100 + 0.10x 2175 24.28 538

Bonus w6 (x) = 100 + 40I{x≥2000} 2136 24.66 545
w7 (x) = 100 + 80I{x≥2000} 2187 22.99 532

Table 1: This table describes seven experimental treatments from DellaVigna and Pope (2018)
that differed in the monetary incentives offered to the subjects. The second column describes
the implied incentive contract, denominated in cents. The remaining columns describe, for
each treatment, the average number of points accumulated, the standard deviation, and the
number of subjects.

We use these data to carry out two exercises. Our first exercise asks whether subjects’

average performance varies in the way our model predicts with our measure of the subjects’

marginal incentives. We use data from two treatments to predict the performance in the re-

maining treatments. The second exercise assesses the performance of the optimal adjustment

generated by our procedure relative to a benchmark that we construct from the data using

the treatments in Table 1.

5.1 Predicting Out-of-Sample Experimental Results

Our results in Section 4 show how to use outcome data from two contracts to predict agents’

effort under an arbitrary contract. We will assess the accuracy and precision of such predic-

tions by taking outcome data from two treatments, supposing one is the status quo contract,

one is the test contract, and using our model to predict average performance in the remaining

treatments.

We are implicitly assuming that at the outset of the experiment, each subject observes

the contract he or she is offered and chooses “effort” a. Then the number of points he or she

accumulates over the ten-minute period, x, is drawn from some probability distribution with

mean a. We therefore interpret effort as being the average number of points accumulated in

a particular treatment. Throughout, we will assume that Conditions 1 and 2 hold. That is,

f (x| a) = g (x) + ah (x) for some g (x) and h (x) satisfying
∫
g (x) dx = 1 and

∫
h (x) dx = 0,
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and c′ (a) = e−β/εa1/ε for some parameters ε and β.7 We will also assume that the agent has

constant-relative-risk-aversion preferences over money, so that v′ (ω) = ω−ρ. We will assume

that ρ = 0.3 and assess the sensitivity of our predictions to this assumption.8

Let us now outline the exercise, and then we will get into the specifics. We are going to

use outcome data from two treatments—let us call them A and B—to predict average output

in the remaining treatments. To do so, we will use the data from these two treatments to

construct an estimate of the function fa(·|a) and the two parameters of the agent’s cost

function. We will then look at a third treatment, C, and predict the agent’s marginal

incentives under that treatment. This exercise will give us a prediction for average output in

treatment C. We will then compare these predictions to the actual average output in that

treatment.

Specifically, we use the outcome data from treatments 2 through 7.9 The outcome data

for treatment j is a cumulative distribution function F j. For each treatment j, we use a

kernel density estimator to construct the pdf f̂ j.10 Then, for each pair (A,B), we use these

pdfs to construct the function

ĥAB(x) =
f̂A(x)− f̂B(x)

aA − aB
. (4)

For each triple (A,B,C), we then construct the predicted marginal incentives under contract

C using data from contracts A and B according to:

ÎABC =

∫
v
(
wC (x)

)
ĥAB (x) dx.

Using the estimates of the agent’s marginal incentives under contracts A and B, we can then

7While it is likely that subjects differ in various dimensions such as their ability or willingness to perform
repetitive tasks, we are unable to estimate any subject-specific heterogeneity, because each subject partici-
pated only once. As such, we treat subjects as being homogeneous, and we use our baseline model to make
our predictions. Section 6.1 provides conditions under which doing so is without loss of generality.

8We assume narrow framing, that is, that subjects do not integrate the experimental earnings with any
other part of the their portfolio. Otherwise, even if they are risk-averse, their marginal utility would, in effect,
be constant over such small payoffs.

9For this exercise, we will not use data from treatment 1, the no-incentives treatment. Our baseline model
predicts that under the contract w1 (x) = 100, subjects would exert zero effort. They do not. We discuss how
to incorporate external incentives such as intrinsic motivation or boredom avoidance into our model, which
is important for accounting for these types of results in Section 5.2 and Appendix A.2.

10We use the triweight kernel with the bandwidth determined by the Silverman Rule-of-Thumb. See Hansen
(2009) for details. We ignore observations with x > 3500 following DellaVigna and Pope’s observation that
it is physically impossible to achieve more than 3500 points during the 10-minute interval, and it is likely
that these individuals are using bots. The results are similar if we use a different kernel estimator or we
incorporate all observations.
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estimate the relevant parameters of the agent’s cost function:

ε̂AB =
ln aA − ln aB

ln ÎABA − ln ÎABB

and β̂AB = ln aA− ε̂AB ln ÎABA . For this exercise, it does not matter which of the two contracts

we suppose to be the status quo and test contracts.11 Finally, our prediction for average points

accumulated in treatment C is ln âABC = β̂AB + ε̂AB ln ÎABC .

We focus first on what we refer to as homogeneous A/B tests, A/B tests in which

treatments A and B are in the same class. That is, they are both piece-rate treatments or

both bonus treatments. We discuss hybrid A/B tests, where treatments A and B are not

in the same class, at the end of this section. For homogeneous A/B tests, we will say that

a prediction is a within-class prediction if treatments A, B, and C are in the same class.

We will say that a prediction is an across-class prediction if treatments A and B are in

the same class, but treatment C is in a different class.

The following result summarizes our main findings for homogeneous A/B tests.

Result 1. For homogeneous A/B tests,

(a) predicted out-of-sample performance is highly correlated with actual performance,

(b) predictions are close to actual performance for both within-class and across-class predic-

tions, and

(c) predictions for a given treatment are similar no matter which pair of contracts is used to

construct the prediction.

For all homogeneous A/B tests, Figure 1 plots our predictions against the actual average

performance for each treatment. The horizontal axis depicts the actual average performance,

aC , for treatments C ∈ {2, . . . , 7}, while the vertical axis plots our prediction, âABC . Across

all our predictions, the correlation between âABC and aC is 0.94, which is Result 1(a).

We also compute, for each triple (A,B,C), the absolute percentage error (APE) of our

prediction:

APE
(
âABC

)
=

∣∣∣∣ âABC − aCaC

∣∣∣∣ .
The mean APE across all our predictions is 1.59 percent. As a comparison, average perfor-

mance in treatment 7 is 20 percent higher than in treatment 2. We can break down these

predictions by whether they are within class or across class. Across all within-class predic-

tions in which treatments A, B, and C are all piece-rate treatments, the mean APE is only

11That is because these objects are symmetric in (A,B): ĝAB = ĝBA, ε̂AB = ε̂BA, and β̂AB = β̂BA.
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Figure 1: This figure plots our predictions against the actual performance for each treatment
for all homogeneous A/B tests. The horizontal axis, depicts the actual average performance,
aC , for treatments C ∈ {2, 3, . . . , 7}, while the vertical axis plots predicted performance,
âABC . The red stars represent predictions of piece-rate treatments using A/B tests from other
piece-rate treatments. The blue triangles represent predictions of bonus treatments using
A/B tests from piece-rate treatments. The green circles represent predictions of piece-rate
treatments using the A/B test from the bonus treatments.

0.66 percent. That is, A/B tests using piece-rate treatments accurately predict out-of-sample

performance in piece-rate treatments.

Next, we can look at across-class predictions. For those predictions where A and B are

bonus treatments, and C is a piece-rate treatment, the mean APE is 0.99 percent. The

predictions are slightly worse when A and B are piece-rate treatments, and C is a bonus

treatment. There, the mean APE is 2.71 percent, and as Figure 1 shows, they systematically

underestimate performance. We discuss our interpretation of this pattern at the end of this

section. Notice, however, that all predictions are close to the 45-degree line, depicted by the

dashed line, illustrating Result 1(b).

Finally, Figure 1 also shows that the estimates of each treatment’s performance are tightly

clustered, illustrating Result 1(c). To quantify this result, we can compute, for each treatment

C, the coefficient of variation of the predictions âABC . The average coefficient of variation

across the six treatments is 0.7% and ranges between 0.21% for treatment 3 and 2% for

treatment 2.
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These results are summarized in Table 2, panel A, column IV. This panel also shows two

additional results. First, the worst-case APE, defined as maxAPE
(
âABC

)
, is also small. This

is true for both within-class predictions and across-class predictions. Second, the quality

of predictions described in Result 1 is not sensitive to our assumptions about the agent’s

coefficient of relative risk aversion (hereafter RRA). The prediction accuracy is also similar

if the agent’s utility is assumed to belong to a different class of functions.12

Table 2: Out-of-Sample Effort Predictions

(I) (II) (III) (IV) (V) (VI) (VII)
Coefficient of RRA (ρ) 0 0.1 0.2 0.3 0.4 0.5 1 13

Panel A: Homogeneous A/B Tests
Corr

(
âABC , aC

)
0.92 0.93 0.94 0.94 0.95 0.96 0.97

Mean APE (%) 1.76 1.69 1.62 1.59 1.56 1.54 1.64
Within-class 0.84 0.76 0.67 0.66 0.67 0.67 1.06
Across-class: piece-rate predictions 1.01 0.99 0.97 0.99 1.05 1.11 2.15
Across-class: bonus predictions 2.93 2.86 2.79 2.71 2.63 2.55 2.04

Worst-case APE (%) 3.65 3.56 3.45 3.34 3.21 3.08 4.30
Within-class 3.43 3.10 2.74 2.35 1.92 1.45 2.56
Across-class: piece-rate predictions 1.76 1.90 2.14 2.39 2.64 2.90 4.39
Across-class: bonus predictions 3.65 3.56 3.45 3.34 3.21 3.08 3.03

Avg. CV of estimates (%) 0.82 0.78 0.74 0.70 0.68 0.68 0.83

Panel B: Hybrid A/B Tests
Corr

(
âABC , aC

)
0.86 0.86 0.85 0.84 0.84 0.83 0.78

Mean APE (%) 2.19 2.18 2.17 2.16 2.15 2.14 2.18
Worst-case APE (%) 10.61 10.63 10.66 10.70 11.07 11.40 12.69
Avg. CV of estimates (%) 2.03 2.03 2.04 2.05 2.05 2.06 2.09

Table 2: This table reports summary statistics for predicted performance under different
assumptions for the agent’s coefficient of RRA. Column (IV) represents our baseline assump-
tion that ρ = 0.3, and the remaining columns vary ρ. Panel A reports, for homogeneous A/B
tests, the correlation between predicted and actual performance, the mean and worst-case
absolute percentage error (APE), and the coefficient of variation of the estimates. Panel B
reports these quantifies for the hybrid A/B tests.

Result 1 and Table 2, panel A focus on homogeneous A/B tests. We now discuss our

predictions using hybrid A/B tests, which are summarized in Table 2, panel B. Across all

predictions involving hybrid A/B tests, the correlation between âABC and aC is 0.84, and the

12If, for example, v(ω) = 1000ω− bω2, and we vary b from zero to one (thus ensuring that marginal utility
is always non-negative), the mean APE varies between 1.44% and 1.76% for homogeneous A/B tests, and
between 2.04% and 2.19% for hybrid A/B tests.

13Unit coefficient of RRA corresponds to the logarithmic utility function; i.e., v(ω) = lnω.
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mean APE is 2.16 percent. On average, hybrid A/B tests tend to perform almost as well as

homogeneous A/B tests, but for some of the (A,B) pairs, they do much worse. The hybrid

(A,B) pairs that perform particularly poorly are (4, 6) , (5, 6), and (5, 7).

To see why, let us focus on the (5, 7) pair—the lessons are similar when we look at (4, 6)

and (5, 6). The output distributions under these two treatments have distinctly different

patterns, as illustrated in the left panel of Figure 10. In particular, for treatment 5, which is

a piece-rate treatment, performance is roughly symmetrically distributed around the average.

For the bonus treatment 7, however, performance spikes just over x = 2000, the threshold for

receiving the bonus. This is because in contrast to our model where effort is chosen once-and-

for all, in the experiment, subjects can adjust their effort over time.14 The estimated function

ĥAB magnifies these differences, because the average performance in these two treatments is

quite similar, with a5 = 2175 and a7 = 2187, and this difference appears in the denominator of

(4). For, say, the (2, 7) pair, we see similarly distinct patterns. Since the average performance

in treatment 2, a2 = 1883, is significantly lower than in treatment 7, however, our out-of-

sample predictions are less influenced by these patterns.

The reason why A/B tests comprising piece-rate treatments underpredict the performance

of the bonus treatments is related. The function ĥAB constructed using bonus treatments

tends to take large positive values for x just over 2000, which is the threshold for receiving

the bonus and small or negative values for other values of x. As a result, the implied marginal

incentives generated by a contract which pays a lump-sum bonus if x ≥ 2000 are large. In

contrast, the ĥAB estimated using piece-rate treatments takes more moderate values for x

values just over 2000. Predictions of bonus-treatment performance constructed using output

data from piece-rate treatments systematically underpredict the marginal incentives, and

hence the effort, generated by bonus contracts, although only by about two percent.

5.2 Performance of Optimal Adjustments

For our second exercise, we will assess the empirical performance of our solution to the

principal’s problem (Adj). To do so, we must first develop a benchmark to compare it

against. For this, we will again use DellaVigna and Pope’s (2018) data and will proceed

in two steps. First, we will build a benchmark model using the data from several of the

treatments. Then for each treatment C, we will compute the benchmark-optimal contract

that solves the principal’s problem using the parameters from this benchmark model and

gives the agent at least as much expected utility as wC .

Second, for each pair of contracts (A,B) belonging to the same class, we will take the

14Appendix A.3 considers an extension in which subjects are allowed to choose the entire output distribu-
tion.
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information from the A/B test involving these two contracts, and we will compute the test-

optimal contract that solves (Adj) and gives the agent at least as much expected utility as

wC . We will then compare its performance to that of the corresponding benchmark-optimal

contract. In light of our results in Section 5.1, we focus on (A,B) pairs from the same class

in this section, and report results for hybrid A/B tests in Appendix A.1.

5.2.1 The Benchmark Model and Optimal Adjustments

We now describe how we construct our benchmark model. Throughout, we will use tildes to

denote components of the benchmark model. First, we construct the benchmark pdf f̃ (x| a)

for all x ∈ [0, 3500] and for all a within a particular interval, which we will describe below.

Next, we construct the parameters of the agent’s cost function. As in the previous section,

we will assume that the agent has constant-relative-risk-aversion (CRRA) preferences over

money, so that ṽ′ (ω) = ω−ρ̃, and we will assume that ρ̃ = 0.3 and assess the sensitivity of

our results to this assumption. Finally, we will also need to make an assumption about the

principal’s gross profit margin m̃. In particular, we will assume that m̃ = 0.2. We discuss

this choice below.

Benchmark Output Distribution. To construct the benchmark pdf f̃ (x|a), we proceed

in two steps. First, we use outcome data for treatments 1 to 5—the no-incentives treatment

and the piece-rate treatments. We discuss this choice in footnote 16. These outcome data

are a set of cumulative distribution functions F
(
x| aC

)
, one for each of the five treatments

C ∈ {1, . . . , 5}. As discussed in the previous section, we use a kernel density estimator to

construct the pdf f̂
(
x| aC

)
for each treatment C ∈ {1, . . . , 5}.15 We assume that f̃ (x| a) =

f̂ (x| a) for all a ∈ {a1, . . . , a5}, and for each x, we use a spline interpolation to construct

f̃(x|a) for other values of a between a1 and an upper bound, a. The spline interpolation is

not guaranteed to satisfy f̃ (x| a) ≥ 0 for all x for choices of a outside the bounds of our data.

We chose our upper bound a to be 2187, which is the largest value a such that f̃ (x| a) ≥ 0

for all a ∈ [a1, a] for all x. Finally, given the benchmark pdf f̃ (x| a), we approximate its

derivative as f̃a (x| a) = f̃ (x| a+ 1)− f̃ (x| a).

Agent’s Benchmark Cost Function. We first return to an issue that came up in the

previous section. The contract associated with treatment 1 provides no marginal incentives:

It is given by w1 (x) = 100 for all x. The baseline model would therefore predict zero effort.

Yet subjects in treatment 1 scored 1521 points on average. To rationalize the fact that

15Again, we use the triweight kernel estimator with the bandwidth determined by the Silverman Rule-of-
Thumb, and have excluded observations with x > 3500.
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subjects chose strictly positive effort levels in this treatment, we modify Condition 2 and

assume that the agent’s cost function is given by c̃′ (a) = e−β̃/ε̃a1/ε̃ − Ĩ0 for some Ĩ0 ≥ 0.

This parameter can be interpreted as the agent’s external incentives: They may come from

intrinsic motivation, longer-term career incentives, or in the case of this experiment, the fact

that it may be fun to challenge yourself to see how many points you can score. Constructing

the agent’s benchmark cost function therefore requires fitting three parameters to the data:

ε̃, β̃, and Ĩ0. Table 3 reports the fitted values for these parameters using nonlinear least

squares estimation.16

Table 3: Fitted parameters for the benchmark model

ε̃ β̃ Ĩ0

0.0322 7.8184 6.528× 10−7

Table 3: This table displays the fitted parameters for the benchmark model. They are
computed using a nonlinear least squares estimation procedure.

Benchmark-Optimal Contract. We then solve for the principal’s benchmark-optimal

contract. Recall that the benchmark-optimal contract depends on what the status quo con-

tract is because it determines the utility that the principal must provide to the agent. We

therefore compute an optimal contract for each treatment C ∈ {2, . . . , 7}. We take wC to

be the status quo contract, and we solve for the principal’s benchmark-optimal contract,

w∗
(
wC
)
, by solving the following two-step problem.

First, for each integer a ∈ [a1, a], we find the cost-minimizing contract that solves

K
(
a;wC

)
= min

w(·)

∫
w (x) f̃ (x|a (w)) dx

subject to the constraint that effort level a is incentive compatible,∫
ṽ (w (x)) f̃ (x|a) dx− c̃ (a) ≥

∫
ṽ (w (x)) f̃ (x|a′) dx− c̃ (a′) for all a′ ,

the constraint that the agent is at least as well off as under the status quo contract∫
ṽ (w (x)) f̃ (x|a) dx− c̃ (a) ≥

∫
ṽ
(
wC (x)

)
f̃
(
x|a
(
wC
))
dx− c̃

(
a
(
wC
))

,

16For each treatment C, we compute ĨC =
∫
v(wi(x))f̃a(x|aC)dx and minimize

∑7
C=1[log(ai) − β −

ε log(ĨC + I0)]2 to obtain ε̃, β̃, and Ĩ0. Constructing f̃ (x|a) using outcome data from only treatments 1
to 5 leads to a lower value for the minimized objective than constructing it with data from any other subset
of the seven treatments.
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and two additional constraints. First, we impose the constraint that w (x) ≥ 100 for all x to

capture the fact that each subject was paid a $1 participation fee. Second, we impose the

constraint that w (x) is weakly increasing in x.17,18,19

For the second step, we do a line search to solve for the principal’s optimal choice of a:

π∗
(
wC
)

= max
a∈[a1,a]

m̃a−K
(
a;wC

)
.

Solving this problem gives us three objects that we use as our benchmark. It gives us the

principal’s benchmark-optimal expected profits π∗
(
wC
)
, the benchmark-optimal effort level

she implements, a∗
(
wC
)
, and the benchmark-optimal contract she puts in place to implement

that effort level, w∗
(
wC
)
.

We conclude this section with a brief discussion of our choice of m̃. Our goal was two-

fold. We wanted to choose a value of m̃ that is high enough so that none of the status quo

contracts yield negative profits. And we wanted to choose a value that is low enough so that

the benchmark-optimal effort choice a∗
(
wC
)

is below a for most treatments. Our choice of

m̃ = 0.2 satisfies these two conditions. We also show in Table 4 how the main pattern of

results varies with m̃ ∈ [0.15, 0.25].

Test-Optimal Contracts. We then solve for the principal’s test-optimal contract given

information from an A/B test. Again, for each treatment C ∈ {2, . . . , 7}, we take wC to

be the status quo contract. For each pair (A,B), we construct a pdf and an agent cost

function using the outcome data from contracts wA and wB. In particular, we construct

ĝAB and ĥAB as in the previous section. From these two functions, we construct a pdf f̂AB

that satisfies f̂AB (x|a) = ĝAB (x) + aĥAB (x) for all x and for all a ∈
[
aAB, aAB

]
, where aAB

and aAB are chosen so that f̂AB (x|a) ≥ 0 for all x and for all a in that interval. The cost-

function parameters ε̂AB and β̂AB are constructed as in the previous section, assuming the

agent’s cost function satisfies ĉAB′ (x) = e−β̂
AB/ε̂ABa1/εAB . We again assume that the agent

has constant-relative-risk-aversion preferences over money v̂′ (ω) = ω−ρ̂ with ρ̂ = 0.3.

We then solve for the principal’s test-optimal contract by solving the following two-step

17Since we are not imposing Condition 1 in the benchmark model, the first-order approach is not always
valid. We therefore impose a global incentive compatibility constraint, requiring that the target effort level
gives the agent a larger expected utility than any other (integer) effort level.

18We impose the monotonicity constraint for two reasons. First, without it, the benchmark-optimal effort is
always equal to the upper bound, a, which implies that any test-optimal contract will mechanically implement
an effort that is weakly smaller than is benchmark-optimal, limiting what we can learn from this exercise.
Second, non-monotonic contracts can motivate gaming and other undesirable behaviors (see, for example,
Innes (1990) and Oyer (2000)), and presumably for this reason, are hardly ever used in practice.

19We solve this problem with the CVX software for Matlab (Grant and Boyd, 2013) after using the trans-
formation V (x) ≡ ṽ (w(x)) to convert it into a convex optimization program.
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problem. First, for each integer a ∈
[
aAB, aAB

]
, we find the cost-minimizing contract that

solves

K̂AB
(
a;wC

)
= min

w(·)

∫
w (x) f̂AB (x|a (w)) dx

subject to the agent’s first-order condition for effort

ĉAB′ (a) =

∫
v̂ (w (x)) ĥAB (x) dx,

the constraint that the principal predicts the agent will be at least as well off as under the

status quo contract∫
v̂ (w (x)) f̂AB (x| a) dx− ĉAB (a) ≥

∫
v̂
(
wC (x)

)
f̂AB

(
x|âABC

)
dx− ĉAB

(
âABC

)
,

as well as the two additional constraints we imposed when we solved for the benchmark-

optimal contract: w (x) ≥ 100 for all x and w (x) is weakly increasing in x.20,21

For the second step, we do a line search to solve for the principal’s optimal choice of a:

max
a∈[a1,aAB]

m̃a− K̂AB
(
a;wC

)
,

Solving this problem gives us the test-optimal contract wAB
(
wC
)
. We then use the bench-

mark model to evaluate the agent’s effort choice and the principal’s expected profits under

this contract. We refer to the resulting effort level, aAB
(
wC
)
, as the test-optimal effort level

and the resulting profits, πAB
(
wC
)
, as the principal’s test-optimal profits.

5.2.2 Performance

We will now discuss the performance of test-optimal contracts. To do so, we first have to

define what it means for test-optimal contracts to perform well. In particular, we will start

with a status quo contract and compare how much the principal’s expected profits increase

when she puts in place the test-optimal contract to how much they increase when she puts

in place the benchmark-optimal contract. We will take the status quo contracts to be the

contracts associated with treatments 2 through 7. The performance comparison is therefore

going to depend on which treatment we are looking at, as well as which pair of contracts we

20An implication of Condition 2 is that the first-order approach is valid. It is therefore without loss of gen-
erality to replace the agent’s incentive compatibility constraint with the corresponding first-order condition.

21In principle, the agent’s effort under the contract wC should appear in the right-hand-side of the agent’s
participation constraint. Of course, this quantity is not directly observed by the principal unless the A/B
test contains treatment C. Therefore, we use the predicted effort under treatment C given the A/B test at
hand, âABC , as described in Section 5.1. The predicted effort is equal to the true effort if C ∈ {A,B}.
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use for our A/B test.

Formally, let us define two quantities for each treatment C. First, we will define the

maximum available gains for treatment C to be the difference between the benchmark-

optimal profits and the status quo profits, that is,

MaxGainsC = π∗
(
wC
)
− π

(
wC
)
,

where π
(
wC
)

is the expected profits in the benchmark model under status quo contract wC .

Second, we will define the average realized gains for treatment C to be the average dif-

ference between the test-optimal profits under status quo contract wC across all homogeneous

A/B tests and the status quo profits, that is,

AvgGainsC =
1

|Hom|
∑

A,B∈Hom

πAB
(
wC
)
− π

(
wC
)
,

where Hom ≡ {(A,B) | (A,B) is a homogeneous pair} and |Hom| = 7 because there are

seven homogeneous A/B tests. Finally, we will define the gains ratio to be the sum over

C of the average realized gains for treatment C divided by the sum over C of the maximum

available gains for treatment C. The following result summarizes our main findings for the

performance of test-optimal contracts.

Result 2. For homogeneous A/B tests,

(a) the average gains ratio across treatments is about 68%,

(b) approximately two-fifths of the gap between realized and maximum gains is due to the

test-optimal contract implementing suboptimal effort, with the remainder attributable to

implementing this effort at too high a cost.

The first part of Result 2, which is illustrated in Figure 2, shows that test-optimal

contracts perform well. The quantity (1/6)
∑7

C=2 AvgGainsC is $7.14, about 68% of the

quantity (1/6)
∑7

C=2 MaxGainsC , which is $10.55. In other words, the information from a

single A/B test allows the principal to realize about 68% of the profit gains that she could

achieve if she knew the production environment and could therefore compute the benchmark-

optimal contract. The gap between the average realized gains and maximum available gains,

MaxGainsC − AvgGainsC , is about $3, and it exhibits little variation across treatments C.

This is illustrated by the ordinary least squares fitted line in Figure 2, which has a slope and

intercept close to 1 and −3, respectively, and is close to each of the points.

The second part of Result 2 sheds light on the sources of this gap. First, test-optimal effort

levels tend to be close to but slightly smaller than benchmark-optimal effort levels. Second,
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Figure 2: This figure compares the average realized gains to the maximum available gains for
each treatment C. By construction, the average realized gains lie below the 45-degree line,
which is depicted by the dashed red line. The green dotted line represents the ordinary least
squares regression line through the points

(
MaxGainsC ,AvgGainsC

)
.

test-optimal contracts tend not to be the cost-minimizing contracts for the effort levels they

induce. Figure 3 below compares the test-optimal effort levels to the benchmark-optimal ones.

On the horizontal axis, it plots the benchmark-optimal effort change, a∗
(
wC
)
− aC , for

each treatment. On the vertical axis, it plots the average test-optimal effort change across

all homogeneous A/B tests, that is, (1/|Hom|)
∑

A,B∈Hom a
AB
(
wC
)
−aC , for each treatment.

This figure illustrates several points. First, the benchmark-optimal effort change varies

widely across treatments. For treatments 5 and 7, the benchmark-optimal effort change is

negative, and for treatment 2, it is almost 200 points. Second, the average test-optimal effort

change is close to the benchmark-optimal effort change. That is, (1/|Hom|)
∑

A,B∈Hom a
AB
(
wC
)
−

aC is close to the 45-degree line for each C. Averaging across all six treatments, the average

effort deviation, which we define to be the difference between the benchmark-optimal effort

change and the test-optimal effort change is −7.12: On average, test-optimal effort levels are

7.12 below the benchmark-optimal effort levels. Given that each unit of effort yields m̃ = 0.2

dollars in profits for the principal, on average, the principal is losing about $1.42 in revenues

from implementing too low of an effort level, or approximately two-fifths of the gap between
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Figure 3: This figure compares, for each treatment C, the benchmark-optimal effort change
and the test-optimal effort change. Each star represents the point with x-coordinate a∗

(
wC
)
−

aC and y-coordinate (1/|Hom|)
∑

A,B∈Hom a
AB
(
wC
)
−aC , for some treatment C. The dashed

red line is the 45-degree line.

the average and maximum gains.

Next, we compare two quantities for each treatment C. For each pair (A,B), the test-

optimal contract wAB
(
wC
)

induces effort level aAB
(
wC
)

and therefore costs the principal

WageBillAB
(
wC
)
≡
∫
wAB

(
wC
)

(x) f̃
(
x| aAB

(
wC
))
dx .

We want to compare this wage bill to the cost of the cheapest contract that implements the

same effort level, which is given by K
(
aAB

(
wC
)

;wC
)
. For each treatment C, let us define the

average overpayment to be (1/|Hom|)
∑

A,B∈Hom WageBillAB
(
wC
)
−K

(
aAB

(
wC
)

;wC
)
.

Across the six treatments, the average overpayment is about $1.79.

Table 4 reports these summary statistics for different values of the coefficient of RRA

we used in the benchmark model, ρ̃, the coefficient of RRA that the principal assumed to

solve for the test-optimal contract given an A/B test, ρ̂, and the principal’s profit margin,

m̃. Both average and maximum gains increase with m̃, but the gains ratio exhibits little

variation. Moreover, all summary statistics are relatively insensitive to the values of ρ̃ and
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ρ̂.22,23

Table 4: Performance of Optimal Adjustments and Sensitivity Analysis

(I) (II) (III) (IV) (V) (VI) (VII)
Model coeff. of RRA (ρ̃) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Test coeff. of RRA (ρ̂) 0.3 0.3 0.3 0.3 0.3 0.1 0.5
Profit margin (m̃) 0.2 0.15 0.25 0.2 0.2 0.2 0.2

Average Gains ($) 7.14 5.17 9.39 7.22 7.12 6.80 7.34
Maximum Gains ($) 10.55 7.62 13.52 10.74 10.59 10.55 10.55
Gains Ratio (%) 67.71 67.88 69.47 67.24 67.23 64.51 69.61
Average Effort Deviation -7.12 -7.74 -6.21 -8.08 -6.95 -8.73 -6.05
Average Overpayment ($) 1.79 1.31 2.09 1.77 1.70 2.13 1.69

Table 4: This table reports for different values of the parameters ρ̃, ρ̂, and m̃, the average and
maximum gains, the gains ratio, the average effort deviation, and the average overpayment,
averaged across C ∈ {2, . . . , 7}. Column (I) represents our baseline parameters. In columns
(II) and (III) we vary the profit margin, m̃. In columns (IV) and (V) we vary the coefficient
of RRA used in the benchmark model, ρ̃. Finally, in columns (VI) and (VII) we vary the
coefficient of RRA that the principal assumed to solve for the test-optimal contract given an
A/B test, ρ̂.

Appendix A.1 reports additional results on the optimal adjustments. In particular, it

presents disaggregated data for the optimal adjustment from each homogeneous A/B test,

it illustrates some benchmark-optimal and test-optimal contracts, and it reports summary

statistics for the performance of optimal adjustments using hybrid A/B tests.

6 Beyond the Classic Model

Our main analysis was carried out in the context of the classic setting of Holmström (1979).

We showed in our second empirical exercise how the framework we developed could accom-

modate several additional considerations that were relevant to the experimental setting we

22The average loss due to implementing a suboptimal effort, m̃ × (Average Effort Deviation), and the
average overpayment do not add up to the difference between the maximum and average gains. This is
because the overpayment is defined as the difference between the wage bill of the test-optimal contract given
an A/B test and the cost-minimizing contract that implements the same effort level, which of course, need
not equal the benchmark-optimal effort level.

23A natural concern is whether the performance of optimal adjustments would continue to be insensitive
to the assumptions about the agent’s coefficient of RRA if stakes were higher. To examine this concern, we
scaled the contracts as well as the profit margin, m̃, by 100 times. The pattern of findings reported in Table
4 continues to hold in all but column VI. If the principal believes the agent is close to risk-neutral whereas
in reality he is not, test-optimal contracts will tend to concentrate payments over a small range of outputs,
and as a result, give the agent less utility than anticipated. This observation suggests that if the principal is
uncertain about the agent’s coefficient of RRA, it is safer to assume he is at least moderately risk-averse.
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analyzed, such as external incentives, limited-liability constraints, and monotonicity con-

straints.

In this section, we show how to extend our analysis in two additional directions. First,

we show how to incorporate unobserved worker heterogeneity. We provide conditions under

which the aggregate data contained in an A/B test suffices to predict workers’ heterogeneous

behavioral responses, and we quantitatively explore the discrepancies that arise when these

conditions are not satisfied. Second, we consider settings in which the agent’s effort and

output are multidimensional. Effort substitution patterns become important for optimal

adjustments, and we show that they can be identified with additional test contracts.

6.1 Heterogeneous Workers

Up to this point, we assumed that the principal faces a mass of identical agents, and we

showed how she can use aggregate data on their performance to improve upon a status quo

contract. In this section, we continue to assume that the principal has access to aggregate

data generated by agents under a pair of contracts, but we now assume that these agents

are heterogeneous. In particular, suppose there is a finite set of types, Φ, and agents with

different types have different effort-cost functions but are otherwise identical.

There are two challenges that arise in general when using aggregate data from an A/B

test to predict how a mass of heterogeneous agents will respond to a change in the contract.

First, a given contract may induce different marginal incentives for different agents. Second,

different agents may respond differently to a change in their marginal incentives. Using data

from an aggregate A/B test to infer agents’ heterogeneous behavioral responses therefore

requires imposing more structure on the problem. In this section, we show how to extend

the conditions from Section 4 in a way that ensures that aggregate data from an A/B test

is sufficient for solving the principal’s problem, and we quantitatively explore the errors that

arise when these extended conditions are not satisfied.

To this end, suppose that a share pφ of agents has cost type φ ∈ Φ, where pφ ≥ 0

and
∑

φ pφ = 1.24 Suppose further that the principal has access to what we refer to as an

aggregate A/B test, AB(wA, wB) = (f
A
, f

B
), where f

A
(x) =

∑
φ pφf(x|aφ(wA)), and,

abusing notation slightly, aφ (w) is the effort choice for a type-φ agent under contract w.

The density f
B

(x) is defined similarly. Define a (w) =
∑

φ pφaφ (w) to be the mean effort

under contract w.

Throughout this section, we assume that the output distribution satisfies Condition 1,

that is, f (x| a) = g (x)+ah (x) for all a and for some g (x) and h (x) satisfying
∫
g (x) dx = 1

24The results in this section are prior free, so it is immaterial whether the principal knows pφ.
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and
∫
h (x) dx = 0. We also assume that for each type φ ∈ Φ, the agent’s effort-cost function

cφ satisfies Condition 2 for some εφ, βφ ≥ 0, that is, c′φ (a) = e−βφ/εφa1/εφ . Finally, we modify

the principal’s problem so that the optimal adjustment only has to make agents better off

on average than the status quo contract.25 That is, if we denote the principal’s profit under

contract w as

π (w) =
∑
φ∈Φ

pφmaφ (w)−
∑
φ∈Φ

pφ

∫
w (x) [g (x) + aφ (w)h (x)] dx,

the principal’s problem is to

maximizew π (w) subject to
∑
φ

pφuφ (w) ≥
∑
φ

pφuφ
(
wA
)

,

where

uφ (w) =

∫
v (w (x)) [g (x) + aφ (w)h (x)] dx− cφ (aφ (w)) .

We will first show how Condition 1 allows us to compute agents’ marginal incentives

using an aggregate A/B test, even if agents are heterogeneous. By Condition 1, we have

f(x|aφ (w)) = g (x) + aφ (w)h (x) for each φ and therefore, if we average over φ, we have

f
k

(x) = g (x) + a(wk)h (x) for k ∈ {A,B}. The function h (x) therefore satisfies h (x) =

(f
B

(x)−fA (x))/(a(wB)−a(wA)) for all x and can be computed using only information from

an aggregate A/B test. Condition 1 also ensures that marginal incentives are independent

of the agent’s effort choice and therefore are common across agents for a given contract w.

That is, I (w) =
∫
v (w (x))h (x) dx.

Next, consider the procedure we outlined in Section 4 for how to use an A/B test to

predict effort under contract w when agents are homogeneous, and denote this prediction by

â (w). That is, using an aggregate A/B test, compute the arc elasticity

ε =
ln a

(
wA
)
− ln a

(
wB
)

ln I (wA)− ln I (wB)
,

and construct the prediction

â (w) = a
(
wA
) [
I (w) /I

(
wA
)]ε

.

25As in the main model, this constraint is motivated by the fact that contract changes are often viewed
by employees with skepticism. So if it makes them better off on average, it is less likely that a critical mass
will oppose it. Additionally, given aggregate data alone, the principal cannot evaluate how a contract change
affects the expected payoff of each individual type.
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In other words, this procedure predicts that a contract that scales marginal incentives over

the status quo contract by I (w) /I
(
wA
)

will scale mean output by [I (w) /I(wA)]ε.

The following result focuses on the case when all agents have the same elasticity; i.e.,

εφ = ε for all φ.26

Proposition 4. Suppose Conditions 1 and 2 are satisfied, and agents have the same elasticity

of effort with respect to marginal incentives, that is, εφ = ε for all φ. Then this procedure

produces the correct prediction (i.e., â (w) = a (w) for all w), and an aggregate A/B test

suffices for solving the principal’s problem.

The first part of Proposition 4 shows that aggregate information can be used to construct

correct predictions about how a heterogeneous workforce responds to a change in the contract.

There are two key steps in the argument. First, as we described above, when Condition

1 holds, the agents’ marginal incentives depend only on the contract they face and not

directly on their effort. Given this property, different types all face exactly the same marginal

incentives, and a given adjustment changes their marginal incentives in exactly the same way.

Second, when Condition 2 holds and agents have the same elasticity of effort with respect to

their marginal incentives, a given change in marginal incentives leads all agents to scale their

effort by the same proportion. To establish the second result that an aggregate A/B test

suffices to solve the principal’s problem, the proof of Proposition 4 shows that calculating the

principal’s objective and the agents’ mean utility depends only on having a correct prediction

of the function a (·).

We now discuss the case when agents differ in εφ. Given an aggregate A/B test, the

principal’s prediction for how mean output changes with w, â (w) = a(wA)
[
I (w) /I(wA)

]ε
,

will be incorrect. Different agent types will have different proportional responses to the

change in marginal incentives, and so the actual mean output under contract w will be

a (w) =
∑

φ pφaφ(wA)
[
I (w) /I(wA)

]εφ .

Figure 4 quantifies the resulting discrepancy. The left panel plots probability mass func-

tions for three distributions over εφ. The distribution depicted by blue squares second-order-

stochastically dominates the distribution depicted by green triangles, which in turn second-

order-stochastically dominates the distribution depicted by red circles. The panel on the right

plots the systematic prediction error that arises under each of these three distributions when

the principal uses the A/B test comprising treatments w4(x) and w5(x) from Table 1 and as-

sumes coefficient of RRA ρ = 0.3. On the vertical axis, it plots 100%×(â (w)− a (w)) /a (w),

26This form of heterogeneity has been assumed elsewhere, for example, by Brewer, Saez and Shephard
(2010), DellaVigna and Pope (2018), and others.
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and on the horizontal axis, it varies the slope α of a piece-rate contract between 0.001 and

1.27

The right panel of Figure 4 highlights several patterns. First, the prediction error is zero

for contracts that induce the same marginal incentives as either the status quo contract or

the test contract. Second, this error is positive (but small) for contracts that induce marginal

incentives in-between those induced by the status quo and test contracts, and it is negative for

contracts with marginal incentives outside this range. Third, this error is larger in magnitude

the more agents vary in εφ. Fourth, it is also larger in magnitude when we predict effort under

contracts that are farther away from the status quo and test contracts (in the sense that they

induce much higher or much lower marginal incentives). And finally, this error is relatively

small in magnitude: it is less than 0.2% for the most disperse distribution.
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Figure 4: This figure illustrates for three different distributions over εφ, the prediction errors
when the principal uses aggregate data from the A/B test comprising treatments w4(x) and
w5(x) from Table 1 to make out-of-sample predictions for contracts of the form w(x) =
100 + αx, where we vary α from 0.001 to 1. The left panel plots the probability mass
functions for three distributions over εφ, and the right panel plots the prediction error that
arises under each of these three distributions as a function of α.

We conclude this section by discussing the consequences of ignoring heterogeneity in the

agents’ preferences over money. Towards this goal, suppose Conditions 1 and 2 are satisfied,

and agents have constant-relative-risk-aversion preferences over money, but different types

27We construct these probability mass functions (pmf) as follows: First, we assume εφ ∼ Gamma(κ, θ),
where κ ∈ {3, 10, 20} corresponds to the pmf depicted by red circles, green triangles, and blue squares,
respectively, and for each κ, the scale parameter θ is determined below. To compute the probability weights
pφ, we discretize the gamma distribution on the grid εφ ∈ {0,∆, 2∆, . . .} for ∆ = 10−3. Second, we compute
ε using the (aggregate) data from the A/B test, and we assume, first, that aφ(wB) = a(wB) for all φ, and
second, that agents have CRRA preferences over money with coefficient 0.3. Next we compute as a function
of θ, the effort of each type under the status quo contract aφ(wA) = aφ(wB)

[
I(wA)/I(wB)

]εφ . Then, we

pick the parameter θ such that ln a
(
wA
)

= ε ln(I(wA)/I(wB)), thus ensuring that ε is consistent with the
distribution over elasticities. Finally, we note that in light of Proposition 4, any heterogeneity in βφ can be
ignored without loss of generality, and that the other A/B tests yield no larger prediction errors.
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have different coefficients of RRA. Because the marginal incentives generated by any given

contract depend on the agent’s utility function, the principal will miscalculate them if she

ignores any underlying heterogeneity. Her effort predictions will therefore be biased.

Figure 5 quantifies this bias. The left panel plots probability mass functions for three

distributions over the coefficient of RRA. The panel on the right plots the systematic pre-

diction error that arises under each of these three distributions when the principal uses the

A/B test comprising treatments w4(x) and w5(x) from Table 1 and assumes agents have

homogeneous elasticities and common coefficient of RRA ρ = 0.3. On the vertical axis, it

plots the prediction error, and on the horizontal axis, it varies the slope α of a piece-rate

contract between 0.001 and 1. Observe that in all cases, the prediction error is negligible.28
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Figure 5: This figure illustrates for three different distributions over the agents’ coefficient
of RRA, the prediction errors when the principal uses the A/B test comprising treatments
w4(x) and w5(x) from Table 1 and assumes agents have homogeneous elasticities and a
common coefficient of RRA ρ = 0.3 to make out-of-sample predictions for contracts of the
form w(x) = 100 + αx, where we vary α from 0.001 to 1.

6.2 Multidimensional Effort

We now extend our main model to the case where the agent’s action is multidimensional. For

example, the agent might be selling different products, he might exert effort towards both

quantity and the quality of his output, or he might be able to influence several aspects of his

output distribution, for example, its mean and its variance. Two additional challenges arise

when extending our methodology to accommodate multidimensional effort. First, effort along

one dimension might affect the marginal costs of effort along other dimensions. Identifying

28We have assumed that the principal’s estimate, ρ = 0.3, is unbiased; i.e., it is equal to the expectation
over the agents’ coefficients of RRA. If this is not the case, the prediction error will be larger. In this example,
if the principal assumes a common coefficient of RRA ρ = 0.1 or ρ = 0.5 instead, the prediction error will
remain below 1%.
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these effort-substitution patterns requires additional test contracts in the local A/B test.

Constructing the local A/B test from a set of test contracts presents a second challenge. In

contrast to the one-dimensional case where effort could be normalized to be mean output,

identifying the agent’s effort vector from data on the output distribution requires additional

a priori information about the nature of effort and may necessitate additional test contracts.

To examine these issues, suppose the agent chooses a vector of actions a ∈ RM , and

a vector of performance measures x ∈ RN is realized according to the probability density

function f (·|a). The agent is paid according to a contract w (x), and the cost of choosing

effort vector a is c (a), where c is increasing and convex. Given a contract w, the agent’s

utility is

u (w) = max
a

∫
v (w (x)) f (x|a) dx− c (a) ,

where the integral is taken with respect to the entire vector x. Assuming the first-order

approach is valid, we can use the same approach as in Section 3 to derive how the agent’s

utility and effort respond to a local adjustment of the contract w in the direction t. In

particular,

Du (w, t) =

∫
tv′ (w) fdx,

and, for each i ∈ {1, . . . ,M},

M∑
k=1

[
ci,k −

∫
v (w) fi,kdx

]
Dak (w, t) =

∫
tv (w) fidx,

where ci,k (a) ≡ ∂2c (a) /∂ai∂ak and similarly for fi,k and fi. We have dropped the dependence

of these functions on x and a to simplify the expressions.

Given contract w and an adjustment t, let us define the Hessian matrix A to be an

M ×M symmetric matrix with elements Ai,k = ci,k −
∫
v (w) fi,kdx. Note that this matrix

does not depend on the adjustment t. Let us also define the marginal-incentives matrix

under adjustment t to be the M × 1 matrix B (t) with elements Bi (t) =
∫
tv (w) fidx. We

can then write the multidimensional analog of (2) as Da (w, t) = A−1B (t), where Da (w, t)

denotes the M × 1 matrix with kth element Dak (w, t).

Next, we turn to the principal’s profits. Again, using the same approach as in Section 3,

adjusting a contract w in the direction t changes her profit according to the differential

Dπ (w, t) =
M∑
i=1

[
mi −

∫
w (x) fi (x|a (w)) dx

]
Dai (w, t)−

∫
t (x) f (x|a (w)) dx,

where notice that we are allowing the principal to place different values mi on different
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dimensions of effort. Given a status quo contract wA, the principal solves

max
t:||t||≤1

Dπ(wA, t) subject to Du(wA, t) ≥ 0.

Turning to the information required for solving the principal’s problem, let us denote

a local A/B test with K test contracts wB1 , . . . , wBK by LAB(wA, wB1 , . . . , wBK ) =

(fA,∇fA,Da(wA, wB1), . . . ,Da(wA, wBK )), where ∇fA is an M × 1 matrix with ith element

fi(x|a(wA)). We will say that test contracts wB1 , . . . , wBK are informative and inde-

pendent if Da(wA, wBk) 6= 0 for all k, and Da(wA, wB1), . . . ,Da(wA, wBK ) are linearly

independent.

Recall that Proposition 1 shows that, for the unidimensional effort case, a local A/B test

reveals fA, fAa , and enables the principal to compute how the agent’s marginal incentives and

utility change for any adjustment t. By the same logic, when M ≥ 2, knowledge of fA and

∇fA suffices for constructing the agent’s marginal incentives matrix B (t) and computing

Du(wA, t) for any t.

When M = 1, the agent’s Hessian matrix A is a singleton, and Proposition 1 shows

that it can be identified with a single test contract. When M ≥ 2, the agent’s Hessian

matrix contains M (M + 1) /2 distinct elements, as it is symmetric. These elements cannot

all be inferred from a local A/B test with one test contract, but knowledge of Da (w, t) for

a particular adjustment t, together with fA and ∇fA generates M equations of the form

Da (w, t) = A−1B (t). The matrix A can therefore be identified as long as the principal

knows Da (w, t) for at least d(M + 1) /2e informative and independent test contracts. Given

an estimate for A, one can then compute Da(wA, t) and therefore Dπ(wA, t) for every t.

Therefore, a local A/B test with K = d(M + 1) /2e informative and independent test con-

tracts provides all the information needed to solve the principal’s problem.

We now address the second challenge that arises when effort is multidimensional: con-

structing a local A/B test. In the unidimensional effort case, constructing a local A/B test

from output data is straightforward. There, it is without loss of generality to normalize effort

so that E [x|a] = a, so that by observing the output distribution for a given contract, the

principal can infer the chosen effort. Then, given contracts wA and wB, the principal can

construct Da(wA, wB) ≈ aB − aA, and fAa (x) ≈ [fB (x)− fA (x)]/(aB − aA).

When effort is multidimensional, using output data from K test contracts to construct

a local A/B test requires a priori information on the nature of effort, and it may also put a

lower bound on how many test contracts are required. To illustrate the first point, define the

function G : RM → RN such that Gi (a) = E[xi|a] for each i. If G is invertible and known

by the principal, then observing E[x|a (w)] for some contract w suffices to infer a (w), and
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therefore the principal can use output data to construct Da(wA, wBk) for each k.

The assumptions that G is invertible and known by the principal are restrictive but

capture many potential settings of interest. For example, suppose the agent is a salesperson

selling M different products, and his effort ai affects only the distribution of his sales xi of

product i. Then we can let M = N , and Gi (a) = ai is once again a normalization. As

another example, suppose output y is one-dimensional, but a1 influences mean output and

a2 the variance of output. This setting can be captured by setting N = 2 and letting x1 = y,

x2 = y2, m1 = m, m2 = 0, G1 (a) = a1, and G2 (a) = a2 + a2
1. This example highlights that

even when output is low-dimensional, the output distribution contains a lot of information

that may be informative about the agent’s choices.

Finally, to illustrate why constructing a local A/B test from output data may require

additional test contracts, note that, given contracts wA and wBk , we have for every x,

f(x|aBk)− f(x|aA) ≈ ∇f(x|aA) · Da(wA, wBk).

Knowing Da(wA, wBk) does not generally suffice to infer ∇f(x|aA). To infer ∇f(x|aA),

one must solve a linear system with M unknowns, which means that up to M informative

and independent test contracts may be required. Oftentimes, however, ∇f(x|aA) can be

identified with a single test contract: for example, if M = N and f is separable so that each

ai determines only the distribution of xi, then ∂fA/∂ai can be determined using the same

identity as in the unidimensional case.

We conclude this section with a discussion of how these ideas can be applied non-locally.

Recall from Section 5.1 that the treatment pairs (4,6), (5,6), and (5,7) generate similar mean

output but starkly different output distributions. This is because subjects can adjust their

efforts over time, suggesting their actions are multidimensional. In Appendix A.3, we show

how to extend the analysis to a setting in which subjects are allowed to choose the entire

output distribution.

Finally, multiple test contracts are likely to prove useful in empirical settings such as

those of Gibbs et al. (2017) and Hong et al. (2018), where agents exert effort towards both

quantity and quality. To use multiple test contracts to derive optimal non-local adjustments

in these settings, one would have to impose assumptions analogous to Conditions 1 and 2.

For example, one might assume that output is separable and affine in each dimension, and

the cost function has scale, elasticity, and cross-elasticity parameters. Each test contract

provides two first-order conditions, and so to recover the unknown parameters, outcome data

from three contracts would be needed.
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7 Discussion and Avenues for Future Research

What does a manager need to know to improve upon an existing contractual arrangement?

We asked and answered this question in the context of the Holmström (1979) model of

principal–agent relationships subject to pure moral hazard problems, we showed how A/B

contracts can provide the relevant information, and we carried out an empirical proof of

concept.

In the last forty years, contract theory has greatly extended its domain, but it has largely

strayed away from the kinds of measurement issues that are important in practice. This paper

just scratches the surface of what we hope can be a fruitful research agenda that combines

theoretical insights with data to answer practical incentive-design questions. There are still

important hurdles to overcome and many important directions to extend the analysis.

Our framework sidesteps both statistical error and approximation error. First, we assumed

the principal has access to an infinitely large sample of output draws under each contract she

has outcome data for. Understanding the limitations of smaller sample sizes is important for

applications, especially in smaller firms.

Second, when we considered non-local adjustments, the conditions we imposed can be

interpreted as an approximation to the true model, which may become worse when considering

contracts farther away from the status quo contract. When this is the case, not all A/B

contracts are equally informative, and questions of optimal A/B test design become more

central (see, for example, Azevedo et. al., 2020). Optimal A/B test design should be informed

both by theories of approximation error and by empirical findings. In our empirical context,

we found that homogeneous A/B contracts tend to lead to better performance than hybrid

A/B contracts. And A/B contracts that themselves lead to large performance changes tend

to lead to better performance than those that induce similar performance. We discussed the

reasons for these differences at the end of Section 5.1. Our analysis also sheds light on cases

in which data from additional test contracts is needed—namely, if external incentives are

important (or relatedly, one of the test contracts generates zero marginal incentives), or if

effort is multidimensional.

Our framework also implicitly assumes that the outcome data given by an A/B test

are generated by non-strategic agents who are best responding to the contract they face.

If agents know they are part of an experiment that will inform their future compensation,

ratchet effects may reduce the informativeness of the A/B test. Similarly, if agents have

other-regarding preferences (see, for example, Bandiera et al., 2011), then agents under one

contract might react negatively to the knowledge that their coworkers face a different contract.

In some settings, these distortions can be avoided altogether by appropriately choosing high-
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level features of the test contract. For example, ratchet effects can be ameliorated by using

aggregate output data from many agents, since the resulting free-rider problem among agents

during the test phase will tend to push each of them towards choosing an effort level that is

a static response to the contract (Cardella and Depew, 2018). Or, if agents’ other-regarding

preferences are determined at the team level, then assigning treatments at the team, rather

than the individual, level can prevent negative reactions. In other settings, these kinds of

considerations may be unavoidable and will therefore inform the design and informativeness of

the experiment itself (see, for example, Liang and Madsen (2020) in the presence of strategic

manipulation and Fehr et al. (2021) in the presence of negative reciprocity).

We showed how to extend our framework to accommodate several additional considera-

tions that are not present in the canonical model, but there are many other important consid-

erations that we did not incorporate. For example, in many environments, team production

makes it hard to distinguish individual performance, and one agent’s marginal incentives may

depend on the effort choices of other agents. When this is the case, there may be value in

putting different agents in the same team on different test contracts.

The last consideration that we will close with is that many workers are motivated through

the use of long-term incentives arising from promotion systems or deferred compensation poli-

cies. In many models of dynamic incentives, an agent’s marginal incentives are summarized

by the sensitivity of their continuation payoffs to their current performance. A/B contracts

can still be used to assess how agents respond to a change in today’s marginal incentives,

but to understand how best to adjust dynamic contracts, the principal would need additional

information on how agents trade off today’s compensation with their future career prospects

in the firm.
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A Additional Results

Here, we present additional results and illustrations from our empirical exploration using the

data of DellaVigna and Pope (2018).

A.1 Additional Results on the Optimal Adjustments

Figure 6 presents disaggregated data for the optimal adjustments from every homogeneous

A/B test. To be specific, the top panel illustrates, for each homogeneous A/B test and each

status quo treatment C ∈ {2, . . . , 7}, the maximum available gains, as well as the realized

gains. The bottom panel illustrates the difference, in percentage terms, between agent’s

expected utility under the test optimal contract, and that under the status quo contract

wC .29 The ratio uAB(wC)/u(wC) ranges between 0.97 and 1.07, and it is greater than one—as

desired—in 31 out of the 42 cases. Two instance deserve further discussion: When the A/B

test comprises treatments (6, 7), and the status quo contract C = 4 and C = 5, the realized

gains are greater than the maximum available gains. This occurs because in those instances,

the test-optimal contract gives the agent approximately 3% fewer utils in expectation than

the benchmark-optimal contract, as illustrated in the lower panel of the figure.

Figure 7 illustrates the benchmark-optimal contract and the test-optimal contracts using

each of the seven homogeneous A/B tests for C = 3 (in the left panel) and C = 7 (in

the right panel). Observe that these contracts pay the minimum wage up to a cutoff, and

above that, prescribe similar pay increases. We make two remarks: First, although the test-

optimal contracts sometimes prescribe very large payments for output realizations above say

x = 3000, the probability of these output realizations is very low, and payments can be

capped with virtually no loss in profits. Second, these contracts can be well-approximated

by simple, parametric contracts that comprise a simple piece-rate with a floor and a cap on

wages, or a base wage plus a bonus paid when output exceeds a threshold.

Figure 7 plots, for each of the piece-rate treatments C ∈ {2, . . . , 5}, the empirical CDF

FC(x) and the predicted CDF using every homogeneous A/B test, F̂AB
C (x). In brackets, we

report the p-values for the Kolmogorov-Smirnov test, which tests the null hypothesis that

the predicted distribution is identical to the empirical one. A/B tests comprising piece-rate

treatments predict the output distribution quite accurately. Indeed, we cannot reject the null

29Recall that our objective is to find, given an A/B test and a status quo contract wC , a contract that
maximizes the principal’s profit and gives the agent at least as much utility as wC . This property is not
guaranteed because the principal does not know the production environment when she chooses the test-
optimal contract. To assess the performance on this dimension, we compare the agent’s expected utility
under the test-optimal contract, uAB(wC) =

∫
ṽ
(
wAB

(
wC
)

(x)
)
f̃
(
x|aAB

(
wC
))
dx − c̃(aAB

(
wC
)
), to that

under the status quo contract wC , u(wC) =
∫
ṽ(wC(x))f̃(x|a(wC))dx− c̃(a(wC)).
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Figure 6: The top panel illustrates, for each homogeneous A/B test and each status quo
treatment C ∈ {2, . . . , 7}, the maximum available gains, as well as the realized gains. The
bottom panel illustrates the difference, in percentage terms, between agent’s expected utility
under the test optimal contract, and that under the status quo contract.

hypothesis at the 0.05 confidence level in 8 out of 12 cases. In contrast, A/B tests comprising

bonus treatments perform less well, especially when predicting F2(x), which is the farthest

out-of-sample contract in terms of the marginal incentives it induces.

Figure 8 plots for each of the bonus treatments C ∈ {6, 7}, the empirical CDF FC(x) and

the predicted CDF using every homogeneous A/B test, F̂AB
C (x). While the predicted CDFs

are closely clustered, they do not predict the output distribution very well, especially the

lack of probability mass around x = 2000. Indeed, using the Kolmogorov-Smirnov test, we

can reject the null hypothesis in all cases.

Table 5 reports the summary statistics for the performance of optimal adjustments using

hybrid A/B tests. In particular, it reports the average and maximum gains, the gains ratio,

the average effort deviation, and the average overpayment for different values of the coefficient

of RRA we used in the benchmark model, ρ̃, the coefficient of RRA that the principal

assumed to solve for the test-optimal contract given an A/B test, ρ̂, and the principal’s profit

margin, m̃. In line with our findings in Section 5.1, hybrid tests perform slightly worse than

homogeneous tests, but the gains ratio varies little across the various parametric assumptions.
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Figure 7: This figure illustrates the benchmark-optimal contract, as well as the test-optimal
contracts using each of the seven homogeneous A/B tests. In the left panel, the status quo
contract is treatment C = 3, whereas in the right panel it is C = 7.

A.2 External Incentives

A limitation of our model is that both contracts in the A/B test must generate strictly pos-

itive marginal incentives, for otherwise it is impossible to recover the cost parameters β and

ε. Moreover, it predicts zero effort for any contract that generates zero marginal incentives,

which is inconsistent with the fact that in the experiment of DellaVigna and Pope (2018), sub-

jects exert strictly positive effort even when they receive a fixed, performance-independent

payment. This suggests that subjects may be motivated by factors beyond explicit per-

formance pay. Such external incentives can be incorporated into our model by modifying

Condition 2 so that the agent’s cost function satisfies c′(a) = e−β/εa1/ε− I0 for some parame-

ters β, ε, and I0. The parameter I0 captures the magnitude of the agent’s external incentives.

To recover these parameters, output data for three contracts is needed. To be specific, if the

principal observes the output distribution for three contracts, (wA, wB1 , wB2), she can use

the corresponding output distributions fA, fB1 , and fB2 to determine the functions g(·) and

h(·), and compute the marginal incentives for any contract. Then she can recover the cost
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Figure 8: This figure illustrates, for each of the piece-rate treatments, the predicted CDF of
output using every homogeneous A/B test, and compares it to the observed one. In brackets,
we report the p-values for the Kolmogorov-Smirnov test, which tests the hypothesis that the
predicted distribution is identical to the empirical one.
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Figure 9: This figure illustrates, for each of the bonus treatments, the predicted CDF of
output using every homogeneous A/B test, and compares it to the observed one. In brackets,
we report the p-values for the Kolmogorov-Smirnov test, which tests the hypothesis that the
predicted distribution is identical to the empirical one.

parameters β, ε, and I0 by solving the nonlinear system

ln a(w) = β + ε ln [I(w) + I0]
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Table 5: Performance of Optimal Adjustments and Sensitivity Analysis for Hybrid A/B Tests

(I) (II) (III) (IV) (V) (VI) (VII)
Model coeff. of RRA (ρ̃) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Test coeff. of RRA (ρ̂) 0.3 0.3 0.3 0.3 0.3 0.1 0.5
Profit margin (m̃) 0.2 0.15 0.25 0.2 0.2 0.2 0.2

Average Gains ($) 6.35 4.54 8.54 6.32 6.47 6.29 5.62
Maximum Gains ($) 10.55 7.62 13.52 10.74 10.59 10.55 10.55
Gains Ratio (%) 60.18 59.65 63.22 58.81 61.10 59.65 52.29
Average Effort Deviation -30.33 -32.94 -26.75 -31.98 -29.19 -28.56 -33.30
Average Overpayment ($) 4.24 4.26 4.22 4.04 4.45 3.19 4.57

Table 5: This table reports for different values of the parameters ρ̃, ρ̂, and m̃, the average and
maximum gains, the gains ratio, the average effort deviation, and the average overpayment,
averaged across C ∈ {2, . . . , 7}. Column (I) represents our baseline parameters. In columns
(II) and (III) we vary the profit margin, m̃. In columns (IV) and (V) we vary the coefficient
of RRA used in the benchmark model, ρ̃. Finally, in columns (VI) and (VII) we vary the
coefficient of RRA that the principal assumed to solve for the test-optimal contract given an
A/B test, ρ̂.

for w ∈ {wA, wB1 , wB2}.
Table 6 reports summary statistics for predicted performance when the principal has one

versus two test contracts. Column I is identical to column IV of Table 2, and it corresponds

to the case in which the principal has a single test contract and predicts out-of-sample effort

under Conditions 1 and 2. For Column II, the principal has two test contracts, one of

which is the no-incentives treatment w1, and predicts effort using the modified cost function

described above. In both cases, we assume that the agent’s utility exhibits constant RRA

with coefficient ρ = 0.3.

A.3 Multitasking with Distribution Manipulation

One of the premises of our model is that the agent chooses a one-dimensional action that

determines the distribution of his output, and we normalized this action to equal mean

output. Although this model predicts out-of-sample effort reasonably accurately, it appears

that this assumption is sometimes violated. As an example, consider treatments 5 and 7:

mean output is similar, but the output distributions have distinctly different patterns as

illustrated in the left panel of Figure 10. In particular, for treatment 5, which is a piece-

rate treatment, performance is roughly symmetrically distributed around the average. For

the bonus treatment 7, however, performance spikes just over x = 2000, the threshold for

receiving the bonus. A similar pattern emerges when we consider the pairs (4, 6) and (5, 6).
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Table 6: Out-of-Sample Effort Predictions with one vs. two test contracts

(I) (II)
# of Test Contracts One (A/B test) Two (A/B1/B2 test)

Panel A: Homogeneous A/B Tests
Corr (âC , aC) 0.94 0.95
Mean APE (%) 1.59 1.57

Within-class 0.66 0.68
Across-class: piece-rate predictions 0.99 n/a
Across-class: bonus predictions 2.71 2.46

Worst-case APE (%) 3.34 2.95
Within-class 2.35 2.35
Across-class: piece-rate predictions 2.39 n/a
Across-class: bonus predictions 3.34 2.95

Panel B: Hybrid A/B Tests
Corr (âC , aC) 0.84 0.82
Mean APE (%) 2.16 2.97
Worst-case APE (%) 10.70 10.44

Table 6: This table reports summary statistics for predicted performance when the principal
has one versus two test contracts, and the agent’s utility exhibits constant RRA with coeffi-
cient ρ = 0.3. To make the comparison meaningful, column (II) considers tests in which one
of the contracts is the no incentives treatment w1.

We now show how one can enrich the model by allowing the agent to choose his output

distribution in a richer manner if the principal has output data for an additional test contract.

In doing so, we demonstrate how to apply some of the ideas from Section 6.2. To be specific,

suppose the agent chooses an effort a ∈ R at cost c(a), which generates a “natural” output

distribution f(x|a). The agent can then engage in manipulation so that his output is drawn

according to f̃(x) instead, by incurring additional cost κ
∥∥∥f̃(x)− f(x|a)

∥∥∥
2

for some parameter

κ ≥ 0, which is unknown to the principal. The agent can choose any probability density

function f̃(x) subject to the constraint that its mean is no larger than that of f(x|a).30 We

assume that f(x|a) and c(a) satisfies Conditions 1 and 2, respectively.

30This model is inspired by Barron, Georgiadis, and Swinkels (2020). As long as w(·) is non-decreasing,

the agent will optimally choose an f̃(x) that has the same mean as f(x|a), which equals a by assumption.
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Faced with a contract w(x), an agent chooses a and f̃(x) by solving the following program:

max
a, f̃(x)≥0

∫
v(w(x))f̃(x)dx− c(a)− κ

∫ [
f̃(x)− g(x)− ah(x)

]2

dx (5)

s.t.

∫
f̃(x)dx = 1∫
xf̃(x)dx ≤ a.

Because manipulation is costly, the agent will optimally choose f̃(x) ≡ f(x|a) if v(w(x)) is

affine in x, and he will choose an f̃(x) that is more (less) dispersed than f(x|a) if v(w(x))

is strictly convex (concave). We can exploit this observation in the following way: Suppose

the principal observes output data for two piece-rate treatments and one bonus treatment,

denoted (fA, fB1 , fB2). Under the assumption that the agent is risk-neutral, using the data

from the two piece rate treatments, the principal can infer the functions g and h, as well

as the cost parameters β and ε as described in Section 5.1. We now explain how to use

the bonus treatment, wB2 , to recover the parameter κ. First, the principal can infer that

the corresponding effort, aB2 , is equal to the mean output. For each κ, let f̃κ denote the

pdf which solves (5) when the agent faces the bonus contract wB2 and a = aB2 . Then the

principal may infer that κ∗ is the minimizer of the L2-norm distance between f̃κ and fB2 ,

that is, κ∗ minimizes
∫

[f̃κ(x)− fB2(x)]2dx.

Having determined all parameters of the model, the principal can predict the effort and

the output distribution for any contract by solving (5). Let f̃AB1B2
C (·;κ) denote the predicted

output distribution for treatment C given output data for treatments (A,B1, B2) as a function

of the cost parameter κ. The right panel of Figure 10 illustrates the principal’s prediction

for the bonus treatment C = 7 given output data for treatments (4, 5, 6), and compares it

to the observed distribution and to the predicted distribution using the method described in

Section 5.1. Notice that f̃AB1B2
C (x;κ∗) is a more accurate prediction of the observed output

distribution f̂ 7 than f̃AB1B2
C (x;∞), reflecting the fact that the agent moves mass just above

2,000 points when facing a bonus contract. However, this approach improves the prediction

accuracy for mean output only by about 0.2%: the mean absolute percentage error decreases

from 2.93% (fifth line in Column I of Table 2) to 2.72%, while the worst-case percentage error

decreases from 3.65% to 3.47%.

This extension highlights two points. First, it is important for the principal to take a

stance on the nature and the dimensions of effort a priori. For example, a model where

the agent chooses the mean and the variance of output would not be useful in this setting,

because subjects appear to influence the distribution of output in a richer manner. Second,
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Figure 10: The left panel of this figure illustrates the estimated probability density func-
tions for treatments 5 and 7. The right panel illustrates the principal’s predicted output
distribution for the bonus treatment C = 7 given output data for treatments (4, 5, 6) using
the estimated cost parameter κ∗, and compares it to the predicted distribution when she
ignores the possibility of manipulation (i.e., assumes κ = ∞) and to the observed output
distribution.

it highlights that the right kind of contract variation may be needed to learn about different

dimensions of effort: Recall that we use the data from two treatments that are not contami-

nated by manipulation to infer the functions (g, h) and the cost parameters (β, ε), and then

we use the data from the bonus treatment to infer the manipulation parameter κ.

Characterizing an optimal adjustment in this extension is challenging, because the princi-

pal’s problem is not a convex program. Our results allow one, however, to predict the profits

under counterfactual contracts. Because contracts in practice typically consist of a finite set

of parameters (e.g., a base wage, a piece-rate that kicks in for performance above some cutoff,

and a cap), the principal’s problem can be solved by brute force as long as the number of

parameters is not too large.
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B A Second Empirical Exploration

In this section, we apply our model to the third version of the Amazon MTurk experiment

conducted by DellaVigna and Pope (2019). That experiment was designed to evaluate the

robustness of experimental findings to a change in the task being performed. Instead of

pressing the ‘a’ and ‘b’ keys in alternating order, subjects were assigned to code the occupation

field of World War II enrollment cards. In this experiment, subjects were paid a fixed $1

fee to complete 40 WWII cards. After they were done, they saw the following message: “If

you are willing, there are 20 additional cards to be coded. Doing this additional work is not

required for your HIT to be approved or for you to receive the $1 promised payment.” In the

treatments we focus on, which are summarized in Table 7, subjects were paid different piece-

rates for each additional card they completed. For example in the first treatment, subjects

were told that “The number of additional cards you complete will not affect your payment in

any way.” Subjects in the second piece-rate treatment, w3, were informed “as a bonus, you

will be paid an extra 1 cent for every 2 additional cards you complete.”

Table 7: Experimental Treatments in Extra-Work Task in DellaVigna and Pope (2019)

Contract Avg. #Additional Cards Std. Deviation #Subjects
No-Incentives w1 (x) = 100 8.63 9.37 158
Piece-Rate w2 (x) = 100 + 0.05x 9.94 9.67 155

w3 (x) = 100 + 0.5x 12.63 9.24 136
w4 (x) = 100 + 2x 15.21 8.08 136
w5 (x) = 100 + 5x 17.39 6.16 154

Table 7: This table describes five experimental treatments from the data-entry task in DellaV-
igna and Pope (2019) that differed in the monetary incentives offered to the subjects. The
second column describes the implied incentive contract, denominated in cents. The remain-
ing columns describe, for each treatment, the average number of additional cards coded, the
standard deviation, and the number of subjects.

We now report the findings from the first exercise described in Section 5.1. That is, we

take each pair of piece-rate treatments in Table 7 to constitute an A/B test, and use our model

to predict the average number of additional cards completed in each of the remaining piece-

rate treatments. We will assume that at the outset of the experiment, each subject observes

the contract he or she is offered and chooses “effort” a. Then the number of additional

cards completed, x ∈ {0, . . . , 20}, is drawn from some probability distribution with mean

a. We therefore interpret effort to be the average number of additional cards completed in

a particular treatment. We will assume that Conditions 1 and 2 hold, that is, the output

distribution is affine in effort and c′(a) = e−β/εa1/ε for some parameters β and ε. We will also

assume that each subject has constant-relative-risk-aversion preferences over money, so that
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v′(ω) = ω−ρ, and we will vary the parameter ρ ∈ [0, 1].

This setting presents a new challenge in that between 85% and 90% of the subjects

in each treatment completed either none or all of the 20 additional cards. Due to those

mass points, the kernel density estimation approach used in Section 5 is not applicable,

and we must therefore modify our methodology. We do so as follows: Imagine that the

principal has outcome data from two treatments, say A and B. For these treatments, she can

compute the empirical distribution functions F̂A(x) and F̂B(x). Let dF̂A(0) = F̂A(0) and

dF̂A(x) = F̂A(x)− F̂A(x− 1) for every integer x ≥ 1, and dF̂B(x) be similarly defined. The

counterpart of Condition 1 in this discrete probability space is that dF (x|a) = g(x) + ah(x)

for some functions g(x) and h(x) such that
∑20

x=0 g(x) = 1 and
∑20

x=0 h(x) = 0. Letting âA

and âB denote the mean output in treatment A and B, respectively, we can construct the

functions

ĥAB(x) =
dF̂A(x)− dF̂B(x)

âA − âB
and ĝAB(x) = dF̂A(x)− âAĥAB(x).

For each triple (A,B,C), we then compute the predicted marginal incentives under contract

C according to

ÎABC =
20∑
x=0

v(wC(x))ĥAB(x).

Using the estimates of the agent’s marginal incentives under contracts A and B, we can

estimate the parameters of the agent’s cost function β̂AB and ε̂AB. Finally, our prediction

for the average number of additional cards completed in treatment C is ln âABC = β̂AB +

ε̂AB ln ÎABC .

Figure 11 plots our predictions against the actual performance for each treatment. The

red stars represent predictions using A/B tests and the procedure described above. The blue

triangles represent predictions using two test contracts, one of which is the no-incentives

treatment w1, and the procedure described in Appendix A.2 adapted to this setting. To

be specific, we assume that each subject’s cost function satisfies c′(a) = e−β/εa1/ε − I0 for

some parameters β, ε, and I0, which we estimate using outcome data from three (rather than

two treatments). Recall that I0 represents the agent’s external incentives, which may, for

example, be due to intrinsic motivation.

Table 8 reports summary statistics of the effort predictions for different values of the

coefficient of RRA ρ. In particular, it reports the correlation between actual and predicted

effort, the mean and the worst-case absolute percentage error. Columns (I)-(IV) focus on

A/B tests, while columns (V)-(VIII) focus on A/B1/B2 tests in which one of the contracts is

the no-incentives treatment. Notice that the prediction accuracy using A/B tests is somewhat
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Figure 11: This figure plots our predictions against the actual performance for each treatment.
The horizontal axis, depicts the actual number of additional WWII cards completed, while
the vertical axis plots predicted performance. The red stars represent predictions using A/B
tests and the procedure described above. The blue triangles represent predictions using two
test contracts, one of which is the no-incentives treatment w1, and the procedure described
in Appendix A.2.

worse than in the ‘a-b’ typing task reported in Table 2.31 It improves substantially however,

when we have outcome data for an additional test contract and use it to incorporate external

incentives into the model. This finding echoes DellaVigna and Pope’s discussion that the

WWII coding task is “more motivating” than the ‘a-b’ typing task.

Next, we report the findings from the second exercise described in Section 5.2. Table 9

reports summary statistics for the performance of optimal adjustments for different values

of the coefficient of RRA we used in the benchmark model, ρ̃, the coefficient of RRA that

the principal assumed to solve for the test-optimal contract given an A/B test, ρ̂, and the

principal’s profit margin, m̃. The gains ratio, which is the ratio of the average profit increase

the principal can achieve using just an A/B test to the profit increase she could achieve if

31Note also that performance varies substantially more across treatments in this task compared to the
‘a-b’ typing task. To be specific, the average absolute percentage performance difference across treatments
is 31.93%, whereas in the ‘a-b’ typing task, it is 6.4%.
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Table 8: Effort Predictions for the Extra-Work task in DellaVigna and Pope (2019)

(I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Coefficient of RRA ρ 0 0.3 0.5 1 0 0.3 0.5 1

Number of test contracts One Two
Corr (âC , aC) 0.98 0.98 0.97 0.96 0.99 0.99 0.99 0.98

Mean APE (%) 4.37 5.14 5.67 7.04 1.81 2.32 2.64 3.44
Worst-case APE (%) 10.67 13.64 15.73 21.37 4.56 5.52 6.14 7.64

Table 8: This table reports, for different coefficients of RRA, the correlation between actual
and predicted performance, the mean and the worst-case absolute percentage error. Columns
(I)-(IV) focus on A/B tests, while columns (V)-(VIII) focus on A/B1/B2 tests in which one
of the contracts is the no-incentives treatment.

she knew the production environment, varies between 70% and 80%. Moreover, the test-

optimal contract implements an effort level very close to the optimal one; almost the entire

gap between the average gains and the maximum gains is due to the principal implementing

the optimal effort at too high a cost.

Table 9: Performance of Optimal Adjustments and Sensitivity Analysis for the Extra-Work task

(I) (II) (III) (IV) (V) (VI) (VII)
Model coeff. of RRA (ρ̃) 0.3 0.1 0.5 0.3 0.3 0.3 0.3
Test coeff. of RRA (ρ̂) 0.3 0.3 0.3 0.1 0.5 0.3 0.3
Profit margin (m̃) 5 5 5 5 5 4 6

Average Gains ($) 17.44 17.06 17.77 17.03 17.73 13.29 22.07
Maximum Gains ($) 20.34 19.77 20.93 20.34 20.34 15.53 25.40
Gains Ratio (%) 75.28 76.30 74.15 70.33 79.60 78.47 76.48
Average Effort Deviation -0.075 -0.104 -0.104 -0.092 -0.075 -0.021 0.100
Average Overpayment ($) 2.84 2.66 3.09 3.26 2.55 2.22 3.26

Table 9: This table reports for different values of the parameters ρ̃, ρ̂, and m̃, the average and
maximum gains, the gains ratio, the average effort deviation, and the average overpayment,
averaged across C ∈ {2, . . . , 5}. Column (I) represents our baseline parameters. In columns
(II) and (III) we vary the coefficient of RRA used in the benchmark model, ρ̃. In columns
(IV) and (V) we vary the coefficient of RRA that the principal assumed to solve for the
test-optimal contract given an A/B test, ρ̂. Finally, in columns (VI) and (VII) we vary the
profit margin, m̃.

Figure 12 presents disaggregated data for the optimal adjustments from every A/B test

when the principal’s profit margin m̃ = 5¢ per additional WWII card and the agent’s coeffi-

cient of RRA ρ̃ = ρ̂ = 0.3. The top panel illustrates, for each A/B test and each status quo

treatment C ∈ {2, . . . , 5}, the maximum available gains, as well as the realized gains. The

bottom panel illustrates the difference, in percentage terms, between agent’s expected utility
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under the test-optimal contract, and that under the status quo contract wC . We remark that

when the status quo contract C = 2 or C = 3, under both the benchmark-optimal and the

test-optimal contracts, the agent’s participation constraint is slack. Overall, the test-optimal

contract delivers to the agent strictly more utils in expectation than the contract wC in all

but one case.
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Figure 12: The top panel illustrates, for each A/B test and each status quo treatment C ∈
{2, . . . , 5}, the maximum available gains, as well as the realized gains. The bottom panel
illustrates the difference, in percentage terms, between agent’s expected utility under the test
optimal contract, and that under the status quo contract.

We conclude this section with a brief discussion of the shape of the test-optimal contracts.

When the status quo contract C ∈ {2, 3}, each test-optimal contract pays the minimum wage,

which is set to $1, plus a lump-sum bonus if the agent completes all 20 additional WWII

cards. When C ∈ {4, 5}, the test-optimal contracts feature trinary wages: they pay a base

wage when x = 0, a slightly higher wage for any x ∈ {1, . . . , 19}, and an even higher wage

when x = 20.
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C Proofs

Proof of Lemma 1. Fix arbitrary upper semi-continuous functions w and t (to ensure that

the desired Gateaux derivatives are well-defined), and consider the contract w + θt for some

θ > 0. The agent’s effort satisfies the first-order condition∫
v(w(x) + θt(x))fa(x|a(w + θt))dx = c′(a(w + θt)).

Differentiating this equation with respect to θ and taking the limit as θ → 0 yields∫
t(x)v′(w(x))fa(x|a(w)) =

[
c′′(a(w))−

∫
v(w(x))faa(x|a(w))

]
Da(w, t) ,

and using the definition DI(w, t) :=
∫
t(x)v′(w(x))fa(x|a(w)), we obtain the desired expres-

sion for Da(w, t).

Next, consider the agent’s expected utility. Faced with contract w + θt, the agent’s

expected utility is

u(w + θt) =

∫
v(w(x) + θt(x))f(x|a(w + θt))dx− c(a(w + θt)) .

Differentiating with respect to θ and taking the limit as θ → 0 yields

Du(w, t) =

∫
t(x)v′(w(x))f(x|a(w)) dx+

[∫
v(w(x))fa(x|a(w))− c′(a(w))

]
Da(w, t)

=

∫
t(x)v′(w(x))f(x|a(w)) dx ,

where the second equality follows because the term in brackets is equal to 0 by the agent’s

first-order condition.

Proof of Lemma 2. This lemma follows immediately from the fact that for any t, Dπ(wA, t)

and Du(wA, t) depend only on fA(·), fAa (·), and Da(wA, t), and no other parameters of the

production environment.

Proof of Proposition 1. Note that

LAB
(
wA, wB

∣∣P) =
(
fA, fAa ,Da

(
wA, wB

∣∣P))
LAB

(
wA, wB

∣∣ P̃) =
(
f̃A, f̃Aa ,Da

(
wA, wB

∣∣ P̃)) .
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If the first statement is true, then the second is obviously true. Next, suppose LAB
(
wA, wB

∣∣P) =

LAB
(
wA, wB

∣∣ P̃). It is immediate that fA = f̃A and fAa = f̃Aa . Next, note that for all t,

DI
(
wA, t

∣∣P) =

∫
tv′
(
wA
)
fa =

∫
tv′
(
wA
)
f̃a = DI

(
wA, t

∣∣ P̃) ,
and by Lemma 1,

Da
(
wA, t|P

)
=
Da
(
wA, wB|P

)
DI (wA, wB|P )

DI
(
wA, t|P

)
Da
(
wA, t|P̃

)
=
Da
(
wA, wB|P̃

)
DI
(
wA, wB|P̃

)DI (wA, t|P̃) ,

so Da
(
wA, t

∣∣P) = Da
(
wA, t

∣∣ P̃) for all t if and only if Da
(
wA, wB

∣∣P) = Da
(
wA, wB

∣∣ P̃),

which is true by supposition.

Proof of Proposition 2. The optimization program given in (Adjlocal) can be rewritten as

max
t

µ∗
∫
tv′(wA)fAa dx−

∫
tfAdx

s.t.

∫
tv′(wA)fAdx ≥ 0∫
t2dx ≤ 1

where

µ∗ :=

(
m−

∫
wAf

A
a dx

)
Da(wA, wB)∫

wBv′(wA)fAa dx
,

and we have used that for any t, Da(wA, t) = Da(wA, wB)
∫
tv′(wA)fAa dx/

∫
wBv′(wA)fAa dx

by Lemma 1. Letting λ ≥ 0 and ν ≥ 0 denote the dual multipliers associated with the first

and the second constraint, we have the Lagrangian

L(λ, ν) = max
t

{
ν +

∫ [
t
(
λv′(wA)fA + µ∗v′(wA)fAa − fA

)
− νt2

]
dx

}
. (6)

For any λ ≥ 0 and ν > 0, we can optimize the integrand with respect to t pointwise. Noting

that the integrand is differentiable with respect to t, the corresponding first-order condition

implies that

tλ,ν =

(
λfA + µ∗fAa

)
v′(wA)− fA

2ν
,
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where t, fA, fAa , and wA are functions of x.32

Next, we pin down the optimal λ and ν, by solving the following dual problem:

min
λ≥0 , ν≥0

L(λ, ν) .

This problem is convex, and using tλ,ν , the corresponding first-order conditions yield

λ∗ = max

{
0,

∫ [
fA − µ∗v′(wA)fAa

]
v′(wA)fAdx∫

[v′(wA)fA]2 dx

}
(7)

and

ν∗ =
1

2

√∫
[(λ∗fA + µ∗fAa ) v′(wA)− fA]2 dx . (8)

Thus, the optimal adjustment direction,

t∗ = tλ∗,ν∗ =

[
λ∗fA(x) + µ∗fAa (x)

]
v′(wA(x))− fA(x)√∫

[(λ∗fA(x) + µ∗fAa (x)) v′(wA(x))− fA(x)]2 dx
∝ T (x, λ∗, µ∗) .

Insofar, we have shown than t∗ solves the dual problem. To show that t∗ solves the primal

problem given in (Adjlocal), we will now establish that strong duality holds. Towards this

goal, let Π∗ denote the optimal value of the primal. Weak duality implies that L(λ∗, ν∗) ≥ Π∗.

Moreover, it is straightforward to verify that t (λ∗, ν∗) is feasible for (Adjlocal), and λ∗ and ν∗ is

strictly positive if and only if the respective (primal) constraint binds; i.e., the complementary

slackness conditions are satisfied: λ∗
∫
t∗v′(wA)fAdx = 0 and ν∗(

∫
t2dx−1) = 0. This implies

that the objective of (Adjlocal) evaluated at t (λ∗, ν∗) is equal to L(λ∗, ν∗), and feasibility

implies that L(λ∗, ν∗) ≤ Π∗. Therefore, we conclude that L(λ∗, ν∗) = Π∗, which proves that

strong duality holds, and t (λ∗, ν∗) solves (Adjlocal). Finally, if wA is locally optimal, then it

must be the case that t∗(x) = 0 and hence T (x, λ∗, µ∗) = 0 for all x.

Proof of Lemma 3. We can write the agent’s maximized utility given contract w as:

u (w) = max
a

∫
v (w (x)) [g (x) + ah (x)] dx− c (a)

=

∫
v (w (x)) g (x) dx+ max

a

{
a

∫
v (w (x))h (x) dx− c (a)

}
=

∫
v (w (x)) g (x) dx+ max

a
{aI (w)− c (a)} .

32If ν = 0, then the integrand of (6) is linear in t, and so L(λ, 0) =∞.

61



Next, define the function

V (I) = max
a
aI − c (a) .

Since ã (I) is everywhere continuous, by the envelope theorem, V is continuously differen-

tiable, and we have

V ′ (I) = ã (I) .

By the fundamental theorem of calculus, for any I and Ĩ,

V (I)− V
(
Ĩ
)

=

∫ I

Ĩ

ã (i) di.

We therefore have

u (w)− u (w̃) =

∫
v (w (x)) g (x) dx+ V (I (w))−

∫
v (w̃ (x)) g (x) dx− V (I (w̃))

=

∫
[v (w (x))− v (w̃ (x))] g (x) dx+

∫ I(w)

I(w̃)

ã (i) di,

which establishes the first claim. The second claim is immediate.

Proof of Proposition 3. Recall that by definition

AB
(
wA, wB|P

)
=
(
fA, fB,

)
, AB

(
wA, wB|P̃

)
=
(
f̃A, f̃B

)
, and

∫
xf(x|a)dx = a.

First, suppose that statement (i) is true. Noting that I(w) =
∫
v(w(x))h(x)dx =

∫
v(w(x))h̃(x)dx =

Ĩ(w), it follows from Condition 2 that a(wi) = ã(wi) for each i ∈ {A,B}, where we abuse

notation and use (no) tildes to denote quantities under environment P̃ (P ). Then, by Con-

dition 1, for each i ∈ {A,B}, f i(x) = g(x) + a(wi|P )h(x) = g̃(x) + a(wi|P̃ )h̃(x) = f̃ i(x),

implying statement (ii).

Next, suppose that (ii) holds; i.e., AB
(
wA, wB

∣∣P) = AB
(
wA, wB

∣∣ P̃). Then it follows

from Condition 2 that g = g̃ and h = h̃. Moreover, for each i ∈ {A,B}, we have a(wi) =

ã(wi), and by Condition 1, I(wi) = Ĩ(wi). Thus, by Condition 2, ε = ε̃ and β = β̃, and so

statement (i) is true.

Finally, it is straightforward that the solution to (Adj) depends only on the parameters

g, h, ε, and β, in addition to the agent’s utility function, v(·). This completes the proof.
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Proof of Proposition 4. Given A/B test AB
(
wA, wB

)
, a type-φ agent’s effort arc-elasticity

satisfies

ε =
ln aφ

(
wA
)
/aφ

(
wB
)

ln IA/IB
.

Since this holds for all φ, it must be the case that for all φ,

aφ
(
wA
)

aφ (wB)
=
aA

aB
,

where this holds because for any real vectors (x1, . . . , xN), (y1, . . . , yN), and (z1, . . . , zN),

x1

y1

= · · · = xN
yN
⇒ xi

yi
=

∑
i zixi∑
i ziyi

.

The principal therefore correctly estimates the arc elasticity parameter, since

ε̂ =
ln āA − ln āB

ln IA − ln IB
=

ln aφ
(
wA
)
− ln aφ

(
wB
)

ln IA − ln IB
= ε.

Next, notice that a type-φ agent’s effort-cost coefficient satisfies φ = ln aφ
(
wA
)
− ε ln IA,

and so his actual effort choice under contract w̃ is

aφ (w̃) = eφI (w̃)ε = aφ
(
wA
)(I (w̃)

IA

)ε
.

Mean effort under contract w̃ is therefore

a (w̃) =
∑
φ

pφaφ (w̃) =
∑
φ

pφaφ
(
wA
)(I (w̃)

IA

)ε
= a

(
wA
)(I (w̃)

IA

)ε
.

The principal’s predicted mean effort is

â (w̃) = eφ̂I (w̃)ε̂ = a
(
wA
)(I (w̃)

IA

)ε
,

which is equal to a (w̃).

We conclude the proof by showing that an aggregate A/B test suffices to solve the princi-

pal’s problem. By Lemma 3, for each type φ, uφ (w̃) = uφ
(
wA
)
+
∫ [
v (w̃ (x))− v

(
wA (x)

)]
g (x) dx+∫ I(w̃)

I(wA)
ãφ (i) di, where ãφ (I) is implicitly defined by the equation c′φ (ãφ (I)) = I. Taking av-
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erages across types, and rearranging, we see that

∑
φ∈Φ

pφ
[
uφ (w̃)− uφ

(
wA
)]

=

∫ [
v (w̃ (x))− v

(
wA (x)

)]
g (x) dx+

∫ I(w̃)

I(wA)

ã (i) di,

where ã (I) =
∑

φ∈Φ pφãφ (I). We can therefore rewrite the principal’s problem as

max
w̃

ma (w̃)−
∫
w̃ (x) [g (x) + a (w̃)h (x)] dx

subject to ∫ [
v (w̃ (x))− v

(
wA (x)

)]
g (x) dx+

∫ I(w̃)

I(wA)

ã (i) di ≥ 0.

Given the first part of this proposition, this problem and therefore its solution, depends only

on the aggregate information AB
(
wA, wB

)
=
(
f̄A, f̄B

)
.
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